Exploring Conflict Reasons for Graph Transformation Systems

Leen Lambers¹, Jens Kösiol², Daniel Strüber³, and Gabriele Taentzer²

¹ Hasso-Plattner-Institut, Universität Potsdam, Potsdam, Germany, leen.lambers@hpi.de
² Philipps-Universität Marburg, Marburg, Germany, {kosiolje, taentzer}@informatik.uni-marburg.de
³ Chalmers University, University of Gothenburg, Gothenburg, Sweden, danstru@chalmers.se

Abstract. Conflict and dependency analysis (CDA) is a static analysis for the detection of conflicting and dependent rule applications in a graph transformation system. Recently, granularity levels for conflicts and dependencies have been investigated focusing on delete-use conflicts and produce-use dependencies. A central notion for granularity considerations are (minimal) conflict and dependency reasons. For a rule pair, where the second rule is non-deleting, it is well-understood based on corresponding constructive characterizations how to efficiently compute (minimal) conflict and dependency reasons. We further explore the notion of (minimal) conflict reason for the general case where the second rule of a rule pair may be deleting as well. We present new constructive characterizations of (minimal) conflict reasons distinguishing delete-read from delete-delete reasons. Based on these constructive characterizations we propose a procedure for computing (minimal) conflict reasons and we show that it is sound and complete.

Keywords: Graph Transformation · Conflict analysis · Static analysis

1 Introduction

Graph transformation [1] is a formal paradigm with many applications. A graph transformation system is a collection of graph transformation rules that, in union, serve a common purpose. For many applications (see [2] for a survey involving 25 papers), it is beneficial to know all conflicts and dependencies that can occur for a given pair of rules. A conflict is a situation in which one rule application renders another rule application inapplicable. A dependency is a situation in which one rule application needs to be performed such that another rule application becomes possible. For a given rule set, a conflict and dependency analysis (CDA) technique is a means to compute a list of all pairwise conflicts and dependencies.

Inspired by the related concept from term rewriting, critical pair analysis (CPA, [3]) has been the established CDA technique for over two decades. CPA
reports each conflict as a critical pair\footnote{1}, that is, a minimal example graph together with a pair of rule applications from which a conflict arises. Recently it has been observed that applying CPA in practice is problematic: First, computing the critical pairs does not scale to large rules and rule sets. Second, the results are often hard to understand; they may contain many redundant conflicts that differ in subtle details only, typically not relevant for the use case at hand.

To address these drawbacks, in previous work, we presented the \textit{multi-granular conflict and dependency analysis} (MultiCDA \cite{4,2}) for graph transformation systems. It supports the computation of conflicts on a given granularity level: On binary granularity, it reports if a given rule pair contains a conflict at all. On coarse granularity, it reports \textit{minimal conflict reasons}, that is, problematic rule fragments shared by both rules that may give rise to a conflict. Fine granularity is, roughly speaking, the level of granularity provided by critical pairs. (In the terminology of our recent work \cite{4}, we here focus on different levels of overlap granularity with fixed coarse context granularity.) We showed that coarse-grained results are more usable than fine-grained ones in a diverse set of scenarios and can be used to compute the fine-grained results much faster.

In this work, we address a major \textit{current limitation of MultiCDA} \cite{2}. The computation of conflicts is only exact for cases where the second rule of the considered rule pair is non-deleting. In this case, it is well-understood how to compute conflicts efficiently, using constructive characterisations of minimal conflict reasons (for coarse granularity) and conflict reasons (for fine granularity). In the other case, MultiCDA can provide an overapproximation of the actual conflicts, by replacing the second rule with its non-deleting variant. On the one hand, this overapproximation may contain conflicts which can never actually arise. On the other hand, the overapproximation does not distinguish conflicts for rule pairs where the second rule is non-deleting from those for rule pairs where the second rule is deleting (i.e. no distinction between delete-delete and delete-read). The first issue leads to a MultiCDA that may report false positives, whereas the latter issue causes the MultiCDA to report true positives without the desired level of detail. Therefore the overapproximation presents an obstacle to the understandability of the results and the usability of the overall technique.

In this paper, we come up with the foundations for an \textit{improved MultiCDA} avoiding this limitation, thus delivering in all cases exact as well as detailed results. To this end we present new constructive characterizations of (minimal) conflict reasons for rule pairs where the second rule may be deleting, distinguishing in particular delete-read (dr) from delete-delete (dd) reasons. Based on these constructive characterizations we propose a basic procedure for computing dr/dd (minimal) conflict reasons and we show that it is sound and complete. In particular, we learn that we can reduce the computation of dr/dd minimal reasons to the constructions presented for the overapproximation \cite{2}. Moreover, the construction of dr/dd reasons can reuse the results computed for minimal reasons, representing the basis for an efficient computation of fine-grained results.

\footnote{1 For brevity, since all conflict-specific considerations in this paper dually hold for dependencies (see our argumentation in \cite{4}), we omit talking about dependencies.}
based on coarse-grained ones. We illustrate our results using a running example modeling requirements for a project management software.

The rest of this paper is structured as follows: Section 2 introduces our running example. Section 3 revisits preliminaries. Section 4 introduces delete-read and delete-delete conflict reasons. Section 5 presents a new characterization of conflict reasons, accommodating both delete-read (dr) and delete-delete (dd) conflicts. Section 6 is devoted to the construction of conflict reasons based on the new characterizations. Section 7 discusses related work and concludes. We present proofs that are omitted from this paper in an extended version [?].

2 Running example

In agile software development processes [5], enterprises quickly react to changes by flexibly adapting their team structures. Figure 1 introduces a set of rules describing requirements for a project management software. The rules are represented in the Henshin [6] syntax, using an integrated syntax with delete, create, and preserve elements. Delete and create elements are only contained in the LHS and RHS, respectively, whereas a preserved element represents an element that occurs both in the LHS and RHS.

The rules, focusing on restructuring and deletion cases for illustration purposes, stem from a larger rule overall set. The first two rules allow the project managers of a branch of the company to reassign roles and members between teams. Rule ShiftMember assigns a member to a different role in the same team. Rule ShiftRole moves a role and its assigned team member to a different team. The other rule deals with a team member leaving the company. Rule ReplaceMemberWithSubstitute (abbreviated to ReplaceM in what follows) removes a team member while filling the left role with a replacement team member, based
on their shared expertise. The role of the replacement member in the existing project is deleted. Note that a variant of this rule, in which the existing role is not deleted, may exist as well.

Conflicts and dependencies between requirements such as those expressed with the rules from Fig. 1 can be automatically identified with a CDA technique. Doing so is useful for various purposes: To support project managers from different teams who may want to plan changes to the personnel structure as independently as possible. Or, for the software developers, to check whether conflicts and dependencies expected to arise actually do, thereby validating the correctness of the requirement specification. Therefore, we use this running example to illustrate the novel CDA concepts introduced in this paper.

3 Preliminaries

As a prerequisite for our exploration of conflict reasons, we recall the double-pushout approach to graph transformation as presented in [1]. Furthermore, we reconsider conflict notions on the transformation and rule level [7, 8, 2], including conflict reasons.

3.1 Graph Transformation and Conflicts

Throughout this paper we consider graphs and graph morphisms as presented in [1] for the category of graphs; all results can be easily extended to the category of typed graphs by assuming that each graph and morphism is typed over some fixed type graph TG.

Graph transformation is the rule-based modification of graphs. A rule mainly consists of two graphs: L is the left-hand side (LHS) of the rule representing a pattern that has to be found to apply the rule. After the rule application, a pattern equal to R, the right-hand side (RHS), has been created. The intersection K is the graph part that is not changed; it is equal to $L \cap R$ provided that the result is a graph again. The graph part that is to be deleted is defined by $L \setminus (L \cap R)$, while $R \setminus (L \cap R)$ defines the graph part to be created.

A direct graph transformation $G \xrightarrow{m,r} H$ between two graphs G and H is defined by first finding a graph morphism2 m of the LHS L of rule r into G such that m is injective, and second by constructing H in two passes: (1) build $D := G \setminus m(L \setminus K)$, i.e., erase all graph elements that are to be deleted; (2) construct $H := D \cup m'(R \setminus K)$. The morphism m' has to be chosen such that a new copy of all graph elements that are to be created is added. It has been shown for graphs and graph transformations that r is applicable at m iff m fulfills the dangling condition. It is satisfied if all adjacent graph edges of a graph node to be deleted are deleted as well, such that D becomes a graph. Injective matches are

2 A morphism between two graphs consists of two mappings between their nodes and edges being both structure-preserving w.r.t. source and target functions. Note that in the main text we denote inclusions by \hookrightarrow and all other morphisms by \rightarrow.
usually sufficient in applications and w.r.t. our work here, they allow to explain constructions with more ease than for general matches. In categorical terms, a direct transformation step is defined using a so-called double pushout as in the following definition. Thereby step (1) in the previous informal explanation is represented by the first pushout and step (2) by the second one [1].

Definition 1 ((non-deleting) rule and transformation). A rule r is defined by $r = (L \xleftarrow{le} K \xrightarrow{ri} R)$ with L, K, and R being graphs connected by two graph inclusions. The non-deleting rule of r is defined by $ND(r) = (L \xleftarrow{le} K \xrightarrow{ri} R)$ with $(L \xleftarrow{le} R \xrightarrow{ri} R)$ being the pushout of (le, ri). Given rule $r_1 = (L_1 \xleftarrow{le_1} K_1 \xrightarrow{ri_1} R_1)$, square (1) in Figure 2 can be constructed as initial pushout over morphism le_1. It yields the boundary graph B_1 and the deletion graph C_1.

A direct transformation $G \xrightarrow{m,r} H$ which applies rule r to a graph G consists of two pushouts as depicted right. Rule r is applicable and the injective morphism $m : L \rightarrow G$ is called match if there exists a graph D such that (PO1) is a pushout.

Given a pair of transformations, a delete-use conflict [1] occurs if the match of the second transformation cannot be found anymore after applying the first transformation. Note that we do not consider delete-use conflicts of the second transformation on the first one explicitly. To get those ones as well, we simply consider the inverse pair of transformations. The following definition moreover distinguishes two cases [7]: (1) a delete-read conflict occurs if the match of the first transformation can still be found after applying the second one (2) a delete-delete conflict occurs if this is not the case, respectively.

Definition 2 (dr/dd conflict). Given a pair of direct transformations $(t_1, t_2) = (G \xrightarrow{m_1,r_1} H_1, G \xrightarrow{m_2,r_2} H_2)$ applying rules $r_1 : L_1 \xleftarrow{le_1} K_1 \xrightarrow{ri_1} R_1$ and $r_2 : L_2 \xleftarrow{le_2} K_2 \xrightarrow{ri_2} R_2$ as depicted in Fig. 2. Transformation pair (t_1, t_2) is in delete-use conflict if there does not exist a morphism $x_{21} : L_2 \rightarrow D_1$ such that $g_1 \circ x_{21} = m_2$. Transformation pair (t_1, t_2) is in dr conflict if it is in delete-use conflict and if there exists a morphism $x_{12} : L_1 \rightarrow D_2$ such that $g_2 \circ x_{12} = m_1$. Transformation pair (t_1, t_2) is in dd conflict if it is in delete-use conflict and if there does not exist a morphism $x_{12} : L_1 \rightarrow D_2$ such that $g_2 \circ x_{12} = m_1$.

3.2 Conflict Reasons

We consider delete-use conflicts between transformations where at least one deleted element of the first transformation is overlapped with some used element of the second transformation. This overlap is formally expressed by a span of graph morphisms between the deletion graph C_1 of the first rule, and the LHS of the second rule (Fig. 2). Remember that $C_1 := L_1 \setminus (K_1 \setminus B_1)$ contains
the deletion part of a given rule and boundary graph B_1 consisting of all nodes needed to make $L_1 \setminus K_1$ a graph. $C_1 \setminus B_1$ may consist of several disjoint fragments, called deletion fragments. Completing a deletion fragment to a graph by adding all incident nodes (i.e. boundary nodes) it becomes a deletion component in C_1. Each two deletion components overlap in boundary nodes only; the union of all deletion components is C_1. If two transformations overlap such that there is at least one element of a deletion fragment included, they are in conflict.

The overlap conditions reintroduced in Def. 3 describe for an overlap of a given pair of rules under which conditions it may lead to a conflict (overlap condition), since there exist transformations (transformation condition) that overlap all elements as prescribed by the given overlap indeed (completeness condition). We call such an overlap conflict reason and it is minimal if no bigger one exists in which it can be embedded. Table 1 provides an overview over all conflict notions for rules (as reintroduced in Def. 4) and their overlap conditions.

General setting: For the rest of this paper, we assume the following basic setting: Given rules $r_1 : L_1 \xleftarrow{c_1} K_1 \xrightarrow{q_{12}} R_1$ with the initial pushout (1) for $K_1 \xleftarrow{le_1} L_1$ and $r_2 : L_2 \xleftarrow{le_2} K_2 \xrightarrow{q_{12}} R_2$, we consider a span $s_1 : C_1 \xleftarrow{o_1} S_1 \xrightarrow{q_{12}} L_2$ as depicted in Fig. 2.

Definition 3 (overlap conditions). Given rules r_1 and r_2 as well as a span s_1, overlap conditions for the span s_1 of (r_1, r_2) are defined as follows:

1. **Weak conflict condition:** Span s_1 satisfies the weak conflict condition if there does not exist any injective morphism $x : S_1 \to B_1$ such that $b_1 \circ x = o_1$.
2. **Conflict condition:** Span s_1 satisfies the conflict condition if for each coproduct $\bigoplus_{i \in I} S_1^i$, where each S_1^i is non-empty and $S_1 = \bigoplus_{i \in I} S_1^i$, each of the induced spans $s_1^i : C_1 \xleftarrow{c_1^i} S_1^i \xrightarrow{q_{12}^i} L_2$ with $o_1^i = o_1|_{S_1^i}$ and $q_{12}^i = q_{12}|_{S_1^i}$ fulfills the weak conflict condition.
3. **Transformation condition:** Span s_1 satisfies the transformation condition if there is a pair of transformations $(t_1, t_2) = (G_{m_1} m_1^1, H_1, G_{m_2} m_2^2, H_2)$ via (r_1, r_2) with $m_1(c_1(o_1(S_1))) = m_2(q_{12}(S_1))$ (i.e. (2) is commuting in Fig. 2).
4. Completeness condition: Span \(s_1 \) satisfies the completeness condition if there is a pair of transformations \((t_1, t_2) = (G^{m_1 \circ c_1} H_1, G^{m_2 \circ c_2} H_2) \) via \((r_1, r_2) \) such that (2) is the pullback of \((m_1 \circ c_1, m_2) \) in Fig. 2.

5. Minimality condition: A span \(s'_1 : C'_1 \xrightarrow{o'_1} S'_1 \xrightarrow{q'_1} L_2 \) can be embedded into span \(s_1 \) if there is an injective morphism \(e : S'_1 \to S_1 \), called embedding morphism, such that \(o_1 \circ e = o'_1 \) and \(q_1 \circ e = q'_1 \). If \(e \) is an isomorphism, then we say that the spans \(s_1 \) and \(s'_1 \) are isomorphic. (See (3) and (4) in Fig. 3.) Span \(s_1 \) satisfies the minimality condition w.r.t. a set \(SP \) of spans if any \(s'_1 \in SP \) that can be embedded into \(s_1 \) is isomorphic to \(s_1 \).

![Fig. 3. Illustrating span embeddings](image-url)

Note that span \(s_1 \) which fulfils the weak conflict condition, also fulfils the conflict condition if and only if \(S_1 \) does not contain any isolated boundary nodes [4].

Definition 4 (conflict notions). Let the rules \(r_1 \) and \(r_2 \) as well as a span \(s_1 \) be given.

1. Span \(s_1 \) is called conflict part candidate for the pair of rules \((r_1, r_2) \) if it satisfies the conflict condition. Graph \(S_1 \) is called the conflict graph of \(s_1 \).
2. A conflict part candidate \(s_1 \) for \((r_1, r_2) \) is a conflict part for \((r_1, r_2) \) if \(s_1 \) fulfills the transformation condition.
3. A conflict part candidate \(s_1 \) for \((r_1, r_2) \) is a conflict atom candidate for \((r_1, r_2) \) if it fulfills the minimality condition w.r.t. the set of all conflict part candidates for \((r_1, r_2) \).
4. A conflict part \(s_1 \) for \((r_1, r_2) \) is a conflict atom if it fulfills the minimality condition w.r.t. the set of all conflict parts for \((r_1, r_2) \).
5. A conflict part \(s_1 \) for \((r_1, r_2) \) is a conflict reason for \((r_1, r_2) \) if \(s_1 \) fulfills the completeness condition.
6. A conflict reason \(s_1 \) for \((r_1, r_2) \) is minimal if it fulfills the minimality condition w.r.t. the set of all conflict reasons for \((r_1, r_2) \).

Conflict notions are in various interrelations as shown in [4]. Here, we recall those that are relevant for our further exploration of conflict reasons.

Definition 5 (covering and composition of conflict parts).
Table 1. Overview of conflict notions

<table>
<thead>
<tr>
<th>Overlap condition / conflict notion</th>
<th>conflict</th>
<th>trans.</th>
<th>compl.</th>
<th>minimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>conflict part candidate</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conflict part</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conflict atom candidate</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>conflict atom</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>conflict reason</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>min. conflict reason</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

1. Given a conflict part s_1, the set A of all conflict atoms that can be embedded into s_1 covers s_1 if for each conflict part $s'_1 : C_1 \xrightarrow{q_1'} S'_1 \xrightarrow{q_2'} L_2$ for (r_1, r_2) that can be embedded into s_1, it holds that s'_1 is isomorphic to s_1 if each atom in A can be embedded into s'_1.

2. Given a conflict part s_1, the set $M = \{s^m_i \mid i \in I\}$ of spans that can be embedded into s_1 via a corresponding set of embedding morphisms $E_M = \{e_i \mid i \in I\}$ covers s_1 if the set E_M is jointly surjective.

Fact 1 (Interrelations of conflict notions and characterization [4, 2]) Let rules r_1 and r_2 as well as conflict part candidate s_1 for (r_1, r_2) be given.

1. If s_1 is a conflict part for (r_1, r_2), there is a conflict reason for (r_1, r_2) such that s_1 can be embedded into it.

2. If s_1 is a conflict atom candidate for rules (r_1, r_2), its conflict graph S_1 either consists of a node v s.t. $o_1(v) \in C_1 \setminus B_1$ or of an edge e with its incident nodes v_1 and v_2 s.t. $o_1(e) \in C_1 \setminus B_1$ and $o_1(v_1), o_1(v_2) \in B_1$.

3. If s_1 is a conflict part (esp. conflict reason) for rules (r_1, r_2), the set A of all conflict atoms that can be embedded into s_1 is non-empty and covers s_1.

4. If s_1 is a conflict reason for rule pair $(r_1, ND(r_2))$, it can be composed of all minimal conflict reasons for $(r_1, ND(r_2))$ that can be embedded into s_1.

5. If s_1 is a minimal conflict reason for rule pair $(r_1, ND(r_2))$, its conflict graph S_1 is a subgraph of a deletion component of C_1.

4 DR/DD Conflict Reasons

Conflict reasons are constructed from conflict part candidates. We distinguish delete-read (dr) from delete-delete (dd) conflict part candidates (and consequently also reasons) by requiring that the dd candidate entails elements that are deleted by both rules, whereas the dr candidate does not.

Definition 6 (dr/dd conflict reason). Let the rules r_1 and r_2 and a conflict part candidate s_1 for (r_1, r_2) be given.

1. s_1 is a dr conflict part candidate for (r_1, r_2) if there exists a morphism $k_{12} : S_1 \rightarrow K_2$ such that $l_{r_2} \circ k_{12} = q_{12}$.
2. \(s_1 \) is a dd conflict part candidate for \((r_1, r_2) \) otherwise.

A conflict part, atom or (minimal) reason is a dr (dd) conflict part, atom or (minimal) reason, respectively, if it is a dr (dd) conflict part candidate.

A conflict atom consists of either a deleted node or deleted edge with incident preserved nodes (see Fact 1). DR atoms, where the conflict graph consists of a node, might possess incident edges that are deleted not only by the first, but also by the second rule. We say that a dr atom is pure if this is not the case.

Definition 7 (pure dr atom). Given a conflict reason \(s_1 : C_1 \xrightarrow{c_1} S_1 \xrightarrow{q_1} L_2 \) and a dr atom \(s'_1 : C_1 \xrightarrow{c'_1} S'_1 \xrightarrow{q'_1} L_2 \) embedded into \(s_1 \) via \(e : S'_1 \rightarrow S_1 \), then \(s'_1 \) is pure with respect to \(s_1 \) if the conflict graph \(S'_1 \) consists of an edge, or if \(S'_1 \) consists of a node \(x \) and each edge \(y \) in \(C_1 \) with source or target node \(o'_1(x) \) has a pre-image \(y' \) in \(S_1 \) with source or target node \(e(x) \) s.t. \(q_1(y') \in le_2(K_2) \).

In this paper, we consider the general case of rule pairs where both rules may be deleting. This implies that conflicts may arise in both directions. The following definition therefore describes for a given pair of rules and a conflict part candidate how compatible counterparts look like for the reverse direction. It naturally leads to the notion of compatible conflict reasons that may occur in the same conflict in reverse directions. We distinguish compatible counterparts that overlap in at least one deletion item as special case, since they will be important for the dd conflict reason construction.

Definition 8 (compatibility, join, dd overlapping). Given rules \(r_1 \) and \(r_2 \) with conflict part candidates \(s_1 \) for \((r_1, r_2) \) and \(s_2 : C_2 \xleftarrow{r_2} S_2 \xrightarrow{q_2} L_1 \) for \((r_2, r_1) \) as in Fig. 4.

1. Candidates \(s_1 \) and \(s_2 \) are compatible if the pullbacks \(s_1 \xleftarrow{a_1} S' \xrightarrow{a_2} S_2 \) of \((c_1 \circ o_1, q_21)\) and \(S_1 \xleftarrow{a'_1} S'' \xrightarrow{a'_2} S_2 \) of \((q_{12}, c_2 \circ o_2)\) are isomorphic via an isomorphism \(i : S' \rightarrow S'' \) such that \(a'_1 \circ i = a_1 \) and \(a'_2 \circ i = a_2 \). We denote a representative of these pullbacks as \(s : S_1 \xleftarrow{s_1} S' \xrightarrow{s_2} S_2 \).

2. Let \(S_1 \xleftarrow{s_1} S \xrightarrow{s_2} S_2 \) be the pushout of \(s \). Morphisms \(ls_1 \) and \(ls_2 \) are the universal morphisms arising from this pushout and the fact that \(c_1 \circ o_1 \circ a_1 = q_{21} \circ o_2 \) and \(c_2 \circ o_2 \circ a_2 = q_{12} \circ a_1 \). Then \(L_1 \xleftarrow{ls_1} S \xrightarrow{ls_2} L_2 \) as in Fig. 4 is called the join of \(s_1 \) and \(s_2 \) and \(S \) is called the joint conflict graph.

3. Compatible conflict part candidates \(s_1 \) for \((r_1, r_2) \) and \(s_2 \) for \((r_2, r_1) \) are dd overlapping if there do not exist morphisms \(k_1 : S' \rightarrow K_1 \) with \(le_1 \circ k_1 = c_1 \circ o_1 \circ a_1 \) and \(k_2 : S' \rightarrow K_2 \) with \(le_2 \circ k_2 = c_2 \circ o_2 \circ a_2 \).

Conflict parts, atoms, or reasons are (dd overlapping) compatible if the corresponding conflict part candidates are, respectively.

As clarified in the following proposition a dr conflict reason can be responsible on its own for a conflict: if only a dr conflict reason is overlapped by corresponding matches, then we obtain a dr initial conflict. Contrarily, for a dd conflict
reason, there exists at least one compatible conflict reason for the reverse rule pair that it can be overlapped with leading to a dd initial conflict. The idea of initial conflicts [8] is that they describe all possible conflicts in a minimal way by overlapping as less elements as possible from both rules.

Proposition 1 (dr/dd conflict reasons and initial conflicts).

- Given a dr conflict reason $s_1 : C_1 \xrightarrow{c_1} S_1 \xrightarrow{q_1} L_2$ for rule pair (r_1, r_2), then the pushout $(m_1 : L_1 \to K, m_2 : L_2 \to K)$ of $L_1 \xleftarrow{c_1 \circ q_1} S_1 \xrightarrow{q_2} L_2$ determines the matches of an dr initial conflict $(t_1, t_2) = (K \xrightarrow{m_1,r_1} P_1, K \xrightarrow{m_2,r_2} P_2)$ with the pullback of $(m_1 \circ c_1, m_2)$ being isomorphic to s_1.

- Given a dd conflict reason s_1 for rule pair (r_1, r_2), then there exists a non-empty set $DD(s_1)$ of dd overlapping compatible dd conflict reasons for rule pair (r_2, r_1) s.t. for each s_2 in $DD(s_1)$ the pushout $(m_1 : L_1 \to K, m_2 : L_2 \to K)$ of the join of (s_1, s_2) determines the matches of an dd initial conflict $(t_1, t_2) = (K \xrightarrow{m_1,r_1} P_1, K \xrightarrow{m_2,r_2} P_2)$.

Finally, we can conclude from the overapproximation already considered in [2] the following relationship between conflict reasons and overapproximated ones.

Proposition 2 (overapproximating conflict reasons). If a span s_1 is a conflict reason for rule pair (r_1, r_2), it is a dr conflict reason for $(r_1, ND(r_2))$.

5 Characterizing DR/DD Conflict Reasons

Table 2 gives a preview of characterization results for dr/dd conflict reasons described in this section and used for coming up with basic procedures for constructing them in Sect. 6. We start with characterizing dr/dd conflict reasons via atoms (Prop. 3). We proceed to characterize dr/dd minimal conflict reasons, showing that we can reuse the constructions for a pair of rules, where the second one is non-deleting (Prop. 4 and Prop. 5). We conclude with characterizing dr/dd conflict reasons via minimal ones (Corr. 1). We distinguish dr from dd conflict reasons and learn that the dd case is more involved than the dr case.
<table>
<thead>
<tr>
<th>conflict notion</th>
<th>characterization result</th>
</tr>
</thead>
<tbody>
<tr>
<td>dr conflict reason</td>
<td>covered by pure dr atoms only (Prop. 3)</td>
</tr>
<tr>
<td>dd conflict reason</td>
<td>covered by at least one dd or non-pure dr atom and arbitrary number of pure dr atoms (Prop. 3)</td>
</tr>
<tr>
<td>dr min. conflict reason equals min. reason for ((r_1, ND(r_2)))</td>
<td>(Prop. 4)</td>
</tr>
<tr>
<td>dd min. conflict reason composed of min. reasons for ((r_1, ND(r_2))) being dd conflict part candidates for ((r_1, r_2))</td>
<td>(Prop. 5)</td>
</tr>
<tr>
<td>dr conflict reason composed of dr min. conflict reasons only</td>
<td>(Corr. 1)</td>
</tr>
<tr>
<td>dd conflict reason composed of min. conflict reasons where at least one of which is dd</td>
<td>(Corr. 1)</td>
</tr>
</tbody>
</table>

Characterizing DR/DD Reasons via Atoms. From the characterization of conflict reasons via atoms (see Fact 1), we can conclude that dr reasons are covered (see Def. 5) by pure dr atoms (see Def. 7). Moreover, each dd reason entails at least one dd atom or non-pure dr atom.

Proposition 3 (dr/dd conflict reason characterization). A dr conflict reason is covered by pure dr atoms only. On the contrary, a dd conflict reason is covered by at least one dd atom or non-pure dr atom and an arbitrary number of pure dr atoms.

From the above characterization it follows that it makes sense to distinguish as special case dd conflict reasons that are covered by dd atoms only.

Definition 9 (pure dd conflict reason). A dd conflict reason is pure if it is covered by dd atoms only.

Characterizing DR/DD Minimal Reasons. A dr minimal conflict reason for a given rule pair equals the minimal conflict reason for the rule pair, where the second rule of the given rule pair has been made non-deleting.

Proposition 4 (dr minimal conflict reason characterization). Each dr minimal conflict reason \(s_1\) for rule pair \((r_1, r_2)\) is a dr minimal conflict reason for rule pair \((r_1, ND(r_2))\).

We can therefore conclude that the conflict graph of a dr minimal conflict reason is again a subgraph of one deletion component (see Fact 1).

Example 1 (dr minimal conflict reason). Figure 5 shows two dr minimal conflict reasons as examples, one for \((r_1, r_2)\) and one for \((r_2, r_1)\). Note that they do not overlap in elements to be deleted. They are the same minimal reasons as for the cases where the second rule is made non-deleting. For comparison, AGG [?] computes 4 critical pairs for \((r_1, r_2)\) one of which is an initial conflict. Figure 5 shows a critical pair but not the initial conflict. For obtaining the initial conflict, it is enough to overlap merely the dr minimal conflict reason for \((r_1, r_2)\) (see Prop. 1).
A dd minimal conflict reason for a rule pair is composed (Def. 5) of minimal reasons for the rule pair, where the second rule has been made non-deleting.

Proposition 5 (dd minimal conflict reason characterization). Given a dd minimal conflict reason \(s_1 \) for \((r_1, r_2)\), \(s_1 \) is composed of a set \(M = \{ s_i \mid i \in I \} \) of minimal conflict reasons for \((r_1, ND(r_2))\). Moreover, each reason in \(M \) is a dd conflict part candidate for \((r_1, r_2)\).

Remember that the conflict graph of each minimal conflict reason for a rule pair, where the second rule is non-deleting, consists of a subgraph of one deletion component. We can therefore conclude that the conflict graph of a dd minimal conflict reason is a subgraph of one or more deletion components.

Example 2 (dd minimal conflict reason). Figure 6 shows an example of a dd minimal conflict reason \(s_1 \) for rule pair \((ReplaceM, ReplaceM)\). \(s_1 \) is a dd conflict reason since \(S_1 \) cannot be mapped to \(K_2 \) in a suitable way. Furthermore, we see that graph \(G \) can be constructed such that the completeness condition is fulfilled and \(m_1 \) and \(m_2 \) are matches. It remains to show that \(s_1 \) is indeed minimal. Conflict part candidate \(s'_1 \) would also be a promising candidate. The resulting graph \(G \), however, would not merge nodes 4:Role with D:Role. Morphism \(m_1 \) would not satisfy the dangling condition then. For a conflict part candidate comprising nodes 2B: Member, 4D: Role, and 5E:Team we can argue similarly. Due to Prop. 5, \(s_3 \) has to be composed of minimal conflict reasons for \((ReplaceM, ND(ReplaceM))\) which have to be deletion components as shown in [2]. Hence, there are no further possibilities to choose a smaller span than \(s_1 \). Note that a dd conflict reason is not always pure. For example, the atom 1A:Member is a (non-pure) dr atom. In addition to this dd minimal conflict reason there exist two more. Their conflict graphs contain the following sets of nodes: \{1B:Member, 2A:Member, 3D:Role\} and \{2A:Member, 4C:Role, 5F:Team\}.

For the rule pair \((ReplaceM, ND(ReplaceM))\), four minimal conflict reasons exist instead. Their conflict graphs contain the following sets of nodes: \{1B:Member, 2A:Member, 3D:Role\}, \{2A:Member, 4C:Role, 5F:Team\}, \{1A:Member,
Fig. 6. A dd (minimal) conflict reason for the rule pair \((\text{Replace} M, \text{Replace} M)\)

2B:Member, 3C:Role, and \{2B:Member, 4D:Role, 5E:Team\}. While the first two are also conflict graphs of dd minimal conflict reasons for rule pair \((\text{Replace} M, \text{Replace} M)\), this is not the case for the last two as the dangling condition is not satisfied in those cases. Moreover, the dd minimal conflict reason in Figure 6 is a conflict reason for \((\text{Replace} M, ND(\text{Replace} M))\) but not a minimal one. For comparison, for the rule pair \((\text{Replace} M, \text{Replace} M)\) AGG \([?]\) computes 71 critical pairs. Figure 6 shows one initial conflict (according to Prop. 1).

Characterizing DR/DD Reasons via Minimal Reasons. The following proposition was proven for a rule pair with the second rule non-deleting, but it can be generalized to the case where the second rule is not necessarily non-deleting. It allows us to construct also for this general case conflict reasons from minimal ones by composing them appropriately.

Proposition 6 (composition of conflict reasons by minimal reasons).

Given a conflict reason \(s_1\) for \((r_1, r_2)\), there is a set of minimal conflict reasons for \((r_1, r_2)\) \(s_1\) is composed of (Def. 5).

This allows to establish the following relationship between dr/dd conflict reasons and minimal ones.

Corollary 1 (composition of dr/dd conflict reasons by minimal ones).

- A dr conflict reason is composed of dr minimal conflict reasons only.
- A dd conflict reason is composed of minimal conflict reasons where at least one of which is dd.

6 Constructing DR/DD Conflict Reasons

It is known how to construct (minimal) conflict reasons for a rule pair, where the second rule is non-deleting \([2]\). Proposition 4 tells us that each dr minimal conflict
reason for a rule pair \((r_1, r_2)\) equals a minimal conflict reason for the rule pair \((r_1, \text{ND}(r_2))\). Each such minimal conflict reason for the rule pair \((r_1, \text{ND}(r_2))\) that is in addition \(\text{dr}\) for \((r_1, r_2)\) delivers us a \(\text{dr}\) minimal conflict reason. From Corollary 1 we know that each \(\text{dr}\) conflict reason is a composition of \(\text{dr}\) minimal conflict reasons again such that their construction is analogous to the one already presented in [2]. In the following, we construct \(\text{dd}\) minimal conflict reasons from rule pairs, which is much more involved than the \(\text{dr}\) case.

Definition 10 (composability, composition of conflict part candidates).

Given rules \(r_1\) and \(r_2\) with conflict part candidates \(s_1\) and \(s_1' : C_1 \xleftarrow{o_1'} S_1 \xrightarrow{q_1} L_2\) for \((r_1, r_2)\).

1. Candidates \(s_1\) and \(s_1'\) are composable if the pullbacks \(s : S_1 \xleftarrow{o_1} S' \xrightarrow{o_2} S_1'\) of \((o_1, o_1')\) and \(S_1 \xleftarrow{o_1''} S'' \xrightarrow{o_2'} S_1'\) of \((q_2, q_2')\) are isomorphic via an isomorphism \(i : S' \to S''\) such that \(a_1' \circ i = a_1\) and \(a_2' \circ i = a_2\). We denote a representative of these pullbacks as \(s\).

2. Let \(S_1 \xleftarrow{s_1} S \xrightarrow{s_2} S_1'\) be the pushout of \(s\). Morphisms \(l_{s_1}\) and \(l_{s_2}\) are the universal morphisms arising from this pushout and the fact that \(o_1 \circ a_1 = o_1' \circ a_2\) and \(q_2 \circ a_2 = q_2' \circ a_1\). Then \(C_1 \xleftarrow{l_{s_1}} S \xrightarrow{l_{s_2}} L_2\) is called the composition of \(s_1\) and \(s_1'\).

3. Given a set \(C\) of candidates, they are composable for \(|C| < 2\). If \(C\) is larger, each two of its candidates have to be composable. The composition of all candidates in \(C\) is the candidate itself if \(|C| = 1\) and the successive composition of its candidates otherwise.

Conflict parts, atoms, or reasons are composable if the corresponding conflict part candidates are, respectively.

Construction (dd minimal conflict reasons).

Let the rules \(r_1\) and \(r_2\) be given.

- Let \(\text{CPC}_1\) be the set of all minimal conflict reasons for \((r_1, \text{ND}(r_2))\) which are \(\text{dd}\) conflict part candidates for \((r_1, r_2)\).
- Given a conflict part candidate \(s_1\), let \(\text{CPC}_2(s_1)\) be the set of all conflict reasons \(s_2 : C_2 \xleftarrow{o_2'} S_2 \xrightarrow{q_2} L_1\) for \((r_2, \text{ND}(r_1))\) such that \(s_1\) is \(\text{dd}\) overlapping compatible with \(s_2\).

The set \(\text{DDMCR}\) of all \(\text{dd}\) minimal conflict reasons for \((r_1, r_2)\) can be constructed as follows (compare Fig. 4):

1. Let \(\text{DDMCR}\) be the empty set and \(n := 1\).
2. For each subset \(M\) of \(n\) composable candidates in \(\text{CPC}_1\) for which the composition of a subset \(M' \subset M\) of \(n - 1\) candidates is not in \(\text{DDMCR}\) yet:
 (a) Compose all candidates in \(M\) to a candidate \(s_1\) and construct \(\text{CPC}_2(s_1)\).
 (b) For each \(s_2\) in \(\text{CPC}_2(s_1)\):
 - Construct the pushout \(L_1 \xleftarrow{m_1} G \xrightarrow{m_2} L_2\) of the join of \(s_1\) and \(s_2\).
If m_1 is a match for rule r_1 and m_2 a match for r_2 and if the pullback of $(m_1 \circ o_1, m_2)$ is isomorphic to s_1, then add s_1 to $DDMCR$ and break.

(c) $n := n + 1$

Remark: Note that a composition of 0 candidates is trivially not in an empty $DDMCR$. This construction terminates since CPC_1 is finite and it has finitely many subsets. n is increased maximally to the size of CPC_1.

Example 3 (Construction of dd min. conflict reason). We construct a dd minimal conflict reason for rule pair (ReplaceM, ReplaceM). We start with $n = 1$ and choose s'_1 including conflict graph S'_1 in Fig. 6. It is a min. reason for (ReplaceM, $\text{ND}(\text{ReplaceM})$) not belonging to $DDCMR$ yet. As discussed in Example 2, it is not a conflict reason for (ReplaceM, ReplaceM). Hence, we cannot find a suitable $s_2 \in CPC_2(s'_1)$. The argumentation for the other minimal conflict reason for (ReplaceM, $\text{ND}(\text{ReplaceM})$) is analogous. Hence, we have to set $n = 2$. As s_1 is a composition of two minimal conflict reasons for (ReplaceM, $\text{ND}(\text{ReplaceM})$), we choose this candidate next. Figure 6 shows that there is an $s_2 \in CPC_2(s_1)$ such that two matches m_1 and m_2 with the pullback of $(m_1 \circ o_1, m_2)$ being isomorphic to s_1 can be constructed. Hence, s_1 is in $DDMCR$.

Theorem 2 (Correctness dd min. conflict reason construction). Given two rules r_1 and r_2, the construction above yields dd minimal conflict reasons for (r_1, r_2) only (soundness) and all those (completeness).

Proof. Soundness: Because of Prop. 5 we know that a dd minimal conflict reason for s_1 for (r_1, r_2) is composed of a set of minimal conflict reasons for $(r_1, \text{ND}(r_2))$, where each of them is a dd conflict part candidate for (r_1, r_2). In Step 2 of the construction we select exactly these building bricks for minimal conflict reasons and compose them if composable. We then perform a breadth-first search (w.r.t. size of composition) over all possible compositions of minimal conflict reasons for $(r_1, \text{ND}(r_2))$. The search returns all compositions for which we can find a compatible conflict part candidate (see Corollary 2) that leads to a dd reason for (r_1, r_2) (see Prop. 1). We only continue searching for new minimal reasons if we did not find a successful smaller composition already.

Completeness: By checking in the construction for all possible combinations of minimal conflict reasons for $(r_1, \text{ND}(r_2))$ if we can find a compatible conflict part candidate leading to an initial conflict (see Prop. 1), we find all minimal conflict reasons for $(r_1, \text{ND}(r_2))$. \hfill \Box

Having constructions for dr/dd minimal conflict reasons at hand, we can compute dd conflict reasons. Each dd reason is composed from minimal reasons, where at least one of them is dd (see Cor. 1). Their construction is thus analogous to the one for dd minimal conflict reasons with the following two differences: (1) Instead of CPC_1 we have the set MCR_1 of minimal dr/dd reasons for (r_1, r_2). (2) Step 2 considers each set of n composable minimal reasons in MCR_1 with at least one of them dd, no matter if the composition of a subset is already
present in the result set or not (since we do not need minimality). Soundness and completeness follows analogous to the proof of Theorem 2 based on Cor. 1 instead of Prop. 5 and omitting the argument for minimality.

7 Related Work and Conclusion

Our paper continues a recent line of research on conflict and dependency analysis (CDA) for graph transformations aiming to improve on the previous CDA technique of critical pair analysis (CPA). Originally inspired by the CPA in term and term graph rewriting [3], the CPA theory has been extended to graph transformation and generally, to M-adhesive transformation systems [9,1].

Azzi et al. [10] conducted similar research to identify root causes of conflicting transformations as initiated in [7] and continued in [2]. Their work is based upon an alternative characterization of parallel independence [11] that led to a new categorical construction of initial transformation pairs. The most important difference is that we define our conflict notions (including the dr/dd characterization) for rule pairs instead of transformation pairs [10] with the aim of coming up with efficient CDA. Moreover, we consider conflict atoms and (minimal) reasons, whereas Azzi et al. [10] focus conflict reasons (in our terminology).

In this paper, we extend the foundations for computing conflicts and dependencies for graph transformations in a multi-granular way. In particular, our earlier work relied on an over-approximation of (minimal) conflict reasons; we assumed a non-deleting version of the second rule of the considered rule pair as input. In contrast, our present work introduces a new constructive characterization of (minimal) conflict reasons distinguishing dr from dd reasons and we present a basic computation procedure that is sound and complete. Building on our recent work [2], we now support precise conflict computation for any given granularity level, from binary (conflict atom) over medium (minimal conflict reason) to fine (conflict reason). Future work is needed to implement the presented constructions, to evaluate efficiency and to investigate usability.

Acknowledgements. This work was partially funded by the German Research Foundation, project “Triple Graph Grammars (TGG) 2.0: Reliable and Scalable Model Integration”.

References