
cba

Steffen Becker et. al. (Hrsg.): Software Engineering und Software Management,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Multi-Granular Conflict and Dependency Analysis in
Software Engineering based on Graph Transformation
(Summary)

Leen Lambers1, Daniel Strüber2, Gabriele Taentzer3, Kristopher Born4, Jevgenij Huebert5

We present a novel multi-granular static conflict and dependency analysis (CDA) of graph
transformation as proposed in our ICSE 2018 (International Conference of Software
Engineering) contribution [La18b].

Conflicts and dependencies are fundamental phenomena in software engineering. For
example, when a software system is developed collaboratively, a change operation can
facilitate or prohibit other change operations. In concurrent programming, conflicts may
arise from data races when a thread writes to a memory location accessed by another thread.
From unrecognized conflicts and dependencies, severe consequences may arise, ranging
from productivity obstacles to fatal safety hazards. Therefore, there is a need for techniques
to detect conflicts and dependencies automatically.

Graph transformation [Ro97] has been shown to be a versatile foundation for supporting
conflict and dependency detection in software engineering, based on the following three
principles: First, graphs are used for representing structures of interest, such as states of
computation or versions of the system structure. Second, certain changes, such as state or
structure modifications, are described using graph transformation rules. Third, the provided
transformation specification is fed to the static conflict and dependency analysis (CDA) of
graph transformations [Pl94, HKT02]: Given a set of transformation rules, all conflicts and
dependencies arising from a given pair of rules are identified. A conflict arises, for example,
if the first rule application deletes an element required by the second rule application. A
key benefit of graph transformation is its mature formal foundation, which supports CDA
techniques that are correct by design: all conflicts and dependencies can be detected.

Based on these principles, the CDA of graph transformations has enabled a large number of
use-cases in software engineering, including analysis and design, model-driven engineering,
and testing. For example, graph transformations can be used to model the execution behavior
1 Universität Potsdam, Hasso-Plattner-Institut, Germany Leen.Lambers@hpi.de
2 Chalmers University | University of Gothenburg, Sweden danstru@chalmers.se
3 Philipps-Universität Marburg, Germany taentzer@mathematik.uni-marburg.de
4 born@mathematik.uni-marburg.de
5 huebert@mathematik.uni-marburg.de

https://creativecommons.org/licenses/by-sa/4.0/
Leen.Lambers@hpi.de
danstru@chalmers.se
taentzer@mathematik.uni-marburg.de
born@mathematik.uni-marburg.de
huebert@mathematik.uni-marburg.de


2 Leen Lambers, Daniel Strüber, Gabriele Taentzer, Kristopher Born, Jevgenij Huebert

of Java programs in terms of preconditions and effects on the object structure; identified
conflicts and dependencies are then used for generating tests covering them. In model-based
refactoring, graph transformations and CDA are used to find a suitable order of refactoring
steps. In software product line engineering, feature interactions can be detected by specifying
features as graph transformations and identifying conflicts and dependencies with CDA.
We present a literature survey of 25 papers describing such use-cases and identify three
key requirements for an improved CDA technique for software engineering: it shall be (i)
domain-independent to be applicable to a large variety of software engineering domains,
(ii) usable in the sense that it should display a reasonable amount of information to support
understandability, and (iii) efficient when applied to software projects of realistic size.

To address these requirements, we present a novel static CDA technique for software
engineering based on graph transformation. It builds on the notion of granularity of conflicts
and dependencies introduced in [Bo17]6. In particular, we provide an efficient algorithm
suite for computing binary, coarse-grained, and fine-grained conflicts and dependencies:
Binary granularity indicates the presence or absence of conflicts and dependencies, coarse
focuses on root causes for conflicts and dependencies, and fine shows each conflict and
dependency in full detail. In an experimental evaluation, our algorithm suite computes
conflicts and dependencies rapidly. Finally, we present a user study, in which the participants
found our coarse-grained results more understandable than the fine-grained ones reported
in a state-of-the-art tool. In summary, we present a multi-granular CDA technique based on
graph transformation achieving the same level of (i) domain-independence as the state of
the art, while providing major (ii) understandability and (iii) performance improvements.

References
[Bo17] Born, Kristopher; Lambers, Leen; Strüber, Daniel; Taentzer, Gabriele: Granularity of

Conflicts and Dependencies in Graph Transformation Systems. In: Graph Transformation,
ICGT. pp. 125–141, 2017.

[HKT02] Heckel, Reiko; Küster, Jochen Malte; Taentzer, Gabriele: Confluence of Typed Attributed
Graph Transformation Systems. In: ICGT. pp. 161–176, 2002.

[La18a] Lambers, Leen; Born, Kristopher; Kosiol, Jens; Strüber, Daniel; Taentzer, Gabriele: Granu-
larity of conflicts and dependencies in graph transformation systems: A two-dimensional
approach. Journal of Logical and Algebraic Methods in Programming, 103:105 – 129,
2018.

[La18b] Lambers, Leen; Strüber, Daniel; Taentzer, Gabriele; Born, Kristopher; Huebert, Jevgenij:
Multi-granular Conflict and Dependency Analysis in Software Engineering Based on
Graph Transformation. In: Proceedings of the 40th International Conference on Software
Engineering. ICSE ’18, ACM, New York, NY, USA, pp. 716–727, 2018.

[Pl94] Plump, Detlef: Critical Pairs in Term Graph Rewriting. In: Mathematical Foundations of
Computer Science. volume 841, pp. 556–566, 1994.

[Ro97] Rozenberg, Grzegorz, ed. Handbook of Graph Grammars and Computing by Graph
Transformations, Vol. 1: Foundations. World Scientific, 1997.

6 The granularity notion has been refined in [La18a], partly based on the experiences gathered in [La18b].


