Architectural Tactics to Achieve Quality Attributes of
Machine-Learning-Enabled Systems: A Systematic
Literature Review

Vladislav Indykov®*, Daniel Striiber®", Rebekka Wohlrab®*

*University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
b Radboud University, Nijmegen, Netherlands
¢Carnegie Mellon University, Pittsburgh, USA

Abstract

Machine-learning-enabled systems are becoming increasingly common in dif-
ferent industries. Due to the impact of uncertainty and the pronounced role
of data, ensuring the quality of such systems requires consideration of several
unique characteristics in addition to traditional ones. This range of quality
attributes can be achieved by the implementation of specific architectural
tactics. Such architectural decisions affect the further functioning of the sys-
tem and its compliance with business goals. Architectural decisions have to
be made with attention to possible quality trade-offs to prevent the cost of
mitigating unintended side effects. A related work analysis revealed the need
for a thorough study of existing architectural decisions and their impact on
various quality attributes in the context of machine-learning-enabled systems.
In this paper, to address this goal, we present comprehensive research on the
quality of such systems, architectural tactics, and their possible quality con-
sequences. Based on a systematic literature review of 206 primary sources,
we identified 11 common quality attributes, and 16 relevant architectural
tactics together along with 85 potential quality trade-offs. Our results sys-
tematize existing research in building architectures of ML-enabled systems.
They can be used by software architects and researchers at the system design
stage to estimate the possible consequences of decisions made.

*Corresponding author
Email address: indykov@chalmers.se (Vladislav Indykov)
URL: https://euphort.se/ (Vladislav Indykov)

Author preprint of a paper to appear in Journal of Systems and Software

Keywords: machine learning, software architecture, software quality,
quality attributes.

1. Introduction

Machine-learning-enabled (ML-enabled) systems [1] are currently in high
demand among various spheres. The design, development, and implementa-
tion of such systems are widespread now since ML technologies allow organi-
zations to reach results that are difficult to achieve through traditional solu-
tions. Machine learning systems typically work with large volumes of data,
adapt, learn, search for, and process complex correlations. The development
of Al-based systems is an extremely relevant strategy for the world’s largest
vendors: Meta is implementing ML components for content moderation and
feed personalization, Microsoft is focused on developing the AI companion
called “Microsoft Copilot”, the use of large language models is conquering
new frontiers. However, designing such systems remains a non-trivial and
non-standardized task due to the lack of detailed system-level guidelines and
instructions for constructing appropriate architectures with a consideration
of system specifics.

The construction of ML-based software architecture starts with the collec-
tion of requirements, particularly, non-functional ones, also known as quality
attributes. They must be considered at the stage of architectural design to
align the system with the intended goals. As Monson stated: “You don‘t
drive the architecture, the requirements do. You do your best to serve their
needs” [2].

There are several detailed specifications and standards (e.g., ISO/IEC
25010 [3] and ISO/IEC 45010 [4]) for traditional software that makes it
possible to predetermine the fundamental quality attributes of the designed
system without conducting any deep research. Some of their quality charac-
teristics can be adapted, updated, and extended to directly meet the needs
of ML-based software due to its unique characteristics compared to tradi-
tional ones. Specifically, ML-enabled systems operate in environments of
high uncertainty and depend on the quality and quantity of data used for
model training, validation, and testing. This fact and its relevance were con-
firmed by the ISO/IEC 25059 [5] issued in June 2023, which adjusted some of
the existing qualities from ISO/TEC 25010 to ML contexts and additionally
considered several ML-specific aspects (e.g., ethics, transparency). While

this new standard presents an important initiative for addressing the specific
quality aspects of ML-enabled systems, it has not been investigated to which
extent it characterizes the relevant aspects of this domain exhaustively. Such
an investigation could be supported by a systematic study, as we perform in
this work.

Quality attributes can be achieved by architectural and non-architectural
tactics. Non-architectural ways of achieving quality are based on organi-
zational non-technical management and on technical decisions that do not
affect software architecture. Such decisions are too dependent on the system
specifics and are out of our scope. Architectural tactics, on the contrary, are
general design decisions. They are designed to improve one specific target
quality attribute. In practice, it is very common that architectural tactics
entail unanticipated tradeoffs on other quality attributes. To raise awareness
of the consequences that come with a selection of architectural tactics, it is
important to make these tradeoffs explicit. This is one of the contributions of
this paper and will enable architects to more deliberately select architectural
tactics for ML-enabled systems in the future.

For example, there is an architectural tactic to implement a real-time data
monitoring module. In the context of ML-enabled systems, by implementing
this architectural tactic, the operator gets an opportunity to monitor all
the data used for model training, testing, and validation as well as dynamic
input data. Such a decision can increase fairness, reliability, maintainability,
accuracy, and security. However, the main trade-off after the implementation
of this tactic appears in terms of resource efficiency when operating with big
data [6], [7], [8].

In this paper, we give a comprehensive picture of architectural tactics
for the engineering of ML-enabled systems along with quality attributes af-
fected by them. We report on the results of a systematic literature review,
in which we extracted information from 206 primary sources about these
aspects. Specifically, we made the following contributions:

1. We propose a quality model for ML-enabled systems, focused on the
most commonly reported quality attributes in the literature, and com-
pare it to the relevant standards of ISO/IEC 25010 [3] and ISO/IEC
25059 [5].

2. We present a range of architectural tactics that can help achieve iden-
tified common quality attributes.

3. We present an analysis of the quality trade-offs of the identified archi-
tectural tactics, summarized as an impact matrix.

This paper is accompanied by a supplementary artifact! which contains
search queries and data extraction sheets.

The rest of this paper is structured as follows: Section 2 discusses related
work and introduces the used terminology. Section 3 describes our research
methodology. Section 4 presents our results, including the identification and
analysis of quality attributes, architectural tactics, and quality trade-offs.
Section 5 discusses implications concerning specific attributes, other quality
standards, and threats to validity. Section 6 concludes and outlines future
work. Section 7 provides a data availability statement. Section 8 presents
the acknowledgments.

2. Background

2.1. Context

A quality attribute (QA) is a measurable or testable property of a sys-
tem that is used to indicate how well the system satisfies the needs of its
stakeholders [9]. In ISO/IEC 9126-1:2001, quality attributes are described
as a “checklist to determine software quality” [10]. According to Lundberg
et al. [11], the quality attributes should guide the design of the software ar-
chitecture. While stakeholders, usage contexts and, therefore, relevant qual-
ity attributes differ from one system to another, one can identify the most
widespread quality attributes applied to systems of different natures. In the
context of this work, we call them the “common quality attributes” (CQAs).

Quality attributes are related to the term “architecturally significant re-
quirement(s)”. However, the latter is entirely specialized to a particular
system, based on the needs of certain stakeholders, technical capabilities,
internal regulations, etc. “In gathering [architecturally significant require-
ments/, we should be mindful of the business goals of the organization” [9)].
In this paper, we seek to generalize existing experience, putting the specifics
of individual systems aside.

An architectural tactic (AT)is a “technique an architect can use to achieve
the required quality attributes” [9]. By definition, the connection between
tactic and certain quality attributes is implied. However, our study goes

!Supplementary Artifact: https://figshare.com/s/57b4fa3f53caecd4asbl

4

further and analyzes the impact of its influence on all identified common
quality attributes. Balance or compromises between them are called quality
trade-offs.

2.2. Related work

The study of software quality for ML-enabled systems is an in-demand
topic among researchers and practitioners [12], [13]. Despite the relatively
small number of studies published at the time of writing the current paper,
a steady positive trend in this domain was noted. The space for interpreting
the quality of Al systems has only been partially explored and a conclusive
view is yet to form, which is proved by the emergence of different quality
models based on industrial experience [14], [15], [16]. Such studies work
with non-functional requirements relevant to a certain system and most often
receive them from domain experts. The generalizability of such models can
be debatable due to context dependence. Their systematization and the
identification of the most common quality attributes is a way to build a
more generalized picture based on real examples. Such a strategy supports
a collection of the most recent materials and makes current research more
independent from external inputs.

There are also plenty of review papers on architectural issues in the con-
text of Al-based systems [17], [18], [19]. These papers explore a collection
of existing architectural design decisions without a clear reference to system
qualities or with a focus on the impact of decisions on individual quality
attributes and their metrics in isolation from the overall quality picture of
the system. As a result, possible trade-offs often remain unnoticed. In con-
trast with such studies, we strive to investigate the effects of architectural
tactics (ATs) on all the identified quality attributes to provide insights at
the architectural level.

3. Methodology

The methodology of systematic literature review (SLR) allowed us to work
with a large amount of scientific information, find common approaches to
different systems, and effectively extract information from different sources.
Such opportunities suit the research in the chosen domain. We decided to
perform an SLR according to Kitchenham’s guidelines [20] as we found them
most detailed and highly applicable to the current study of software archi-
tectures.

3.1. Review Questions

To achieve the research objectives, three fundamental review questions
(RQs) were identified.

RQ1: What are the most frequently reported quality attributes
for ML-enabled systems? This question aims to identify the most often
emphasized QAs in scientific literature.

RQ2: What architectural tactics have been reported to be ef-
fective for ML-enabled systems? This question aims to identify ATs
to achieve quality attributes defined in RQ1. If the quality attribute can not
be satisfied by any AT, then it is out of scope for RQ2 and RQ3.

RQ3: For each architectural tactic, what is the reported impact
on all the identified quality attributes? This question aims to identify
quality trade-offs when ATs defined in RQ2 are implemented.

3.2. Inclusion and Exclusion Criteria

Only scientific literature was analyzed in this work, leaving grey literature
outside the scope of this study. We used the following inclusion criteria:

1. Research scientific papers containing lists of QQAs for specific or general
ML-enabled system(s);

2. Research and review scientific papers with the description of ATs and
their influence on the QA(s) of specific or general ML-enabled sys-
tem(s).

We used the following exclusion criteria:

Grey literature;
Scientific papers about QAs of non-ML-enabled systems;
Scientific papers about ATs in non-ML-enabled systems;

Ll e

Scientific papers about applying ML to address software quality con-

cerns of non-ML-enabled systems;

5. Scientific papers about applying ML to address architectural concerns
of non-ML-enabled systems;

6. Exclusively for RQ1: secondary research (literature reviews).

For our investigation of RQ1, in which we counted the number of occur-
rences of specific quality attributes in the literature, we deliberately excluded
secondary studies. This is to avoid bias that would arise if the same pri-
mary study and its contained quality attributes are considered several times:

through considered secondary studies and through our own data collection.
For RQ2 and RQ3 we found it reasonable to leave secondary research included
to expand the search and collect architectural tactics as much as possible.
The limitation on grey literature is justified by the availability of a sufficient
amount of “white” literature for the current study.

3.83. Data Sources

Our search procedure was targeted to enable precise investigation of the
identified research questions. To this end, we selected appropriate digital
libraries and determined a suitable publication time frame.

Literature databases. To build up a high-quality review, only publications
from journals and conference proceedings indexed by at least one globally sig-
nificant citation database (e.g., Scopus, Web of Science, etc.) were analyzed.
The five most popular and largest online digital libraries were the sources
for this research: IEEE Xplore (ieeexplore.ieee.org), ACM Digital Library
(dl.acm.org), Springer (springerlink.com), Elsevier (sciencedirect.com), Wi-
ley (onlinelibrary.wiley.com).

Time frame. Since this study seeks to explore the most relevant expe-
rience in the field of ML-enabled system design, we decided to limit the
number of papers with the earliest date of publication of 2011. This decision
was made also in connection with the release of the most recent version of
the ISO/IEC 25010, which dates to 2011 [3]. This standard is important for
the study since this research seeks, in some sense, to clarify the list of quality
attributes from it with a consideration of the ML-enabled specifics and recent
research experience. Thus, this review is based on the papers from 2011 to
2024 (the year of writing).

3.4. Data Collection

Each review question implies its own objective. The architectural tactics
are often not mentioned in works related to software quality and the trade-
offs are often not considered in the works on a certain architectural tactic.
Thus, we slightly moved away from the standard approach to a systematic
literature review with only one query for all review questions and divided
our search strategy into three queries, each of which corresponded to its own
RQ.

The research under RQ1 works with a set of scientific papers that con-
tains a list of QAs specific to ML-enabled system(s). In the literature, they
can be represented explicitly as a list (e.g., a study of Habibullah et al. [21])

7

or addressed when describing a certain problem or proposing a solution on
a system level (e.g., a study of Vojivr et al. [22]). Preliminary research has
shown that in the literature on deep learning systems, neural networks, or
artificial intelligence systems, the term “machine learning” may not be ex-
plicitly stated in the text of the work. Therefore, we decided to expand the
query with the above terms to cover a larger number of papers. The intro-
duction of other ML-related terms (such as “MLOps”, “ML Engineering”
etc.) could potentially shift focus from architectural scope to a more opera-
tional one, while the introduction of other software engineering terms (such
as “software quality”) could exclude certain papers that did not explicitly
mention them. Therefore, we decided not to include those keywords. The
resulting query for RQ1 is presented below:

("machine learning" OR "deep learning" OR "artificial
intelligence" OR '"neural network" OR "AI" OR "ML" OR "DL")

AND ("system" OR software") AND ("quality attributex" OR
"quality characteristic*" OR "non-functional requirementx"

OR "nonfunctional requirement*" OR "quality model" OR "quality
requirement*")

Answering RQ2 identifies architectural tactics that improve certain qual-
ity attributes. We used search queries based on the results obtained from
RQ1, which included common quality attributes (for example, security), to-
gether with their sub-characteristics (respectively, privacy). The difficulty
of this task is that relevant tactics are not easily identified, since developers
might introduce an architectural tactic without referring to it as such. To
address this challenge we also included the terms “design pattern” and “ar-
chitectural decision” in the query. However, we still consider this challenge
as a threat to validity and can not argue that the list of collected architec-
tural tactics is complete. Search queries for RQ2 were built according to
the template presented below with changing parameters of quality attributes
together with their sub-characteristics:

The resulting query for RQ1 is presented below:

("machine learning" OR "deep learning" OR "artificial
intelligence" OR "neural network" OR "AI" OR "ML" OR "DL")

AND (system" OR "software") AND ("common quality attribute" OR
"subcharacteristic[1]" OR... OR "subcharacteristic[n]")

AND ("*architectur* tactic*" OR "design patternx" OR
"xarchitectur* design decision*" OR "*architecturx*

decision*")

The research under RQ3 implies the study of all possible impacts (pre-
dominantly positive, predominantly negative, or ambivalent) of the identified
architectural tactics from RQ2 on the common quality attributes identified in
RQ1. For RQ3 we wrote 16 queries (equal to the number of identified archi-
tectural tactics). We expected that the connections between some ATs and
some QAs would not be addressed, however, the papers that brought some
insights are of special usefulness for the current research. The structure of
the search queries corresponds to the template presented below and includes
all of the studied common quality attributes and their sub-characteristics
together with a changing parameter of architectural tactic:

("machine learning" OR "deep learning" OR "artificial
intelligence" OR "neural network" OR "AI" OR "ML" OR "DL")

AND ("common quality attribute[1]"” OR ... OR "common
quality attribute[n]" OR "subcharacteristic[1]"” OR... OR
"subcharacteristic[m]") AND ("architectural tactic[i]") AND
("trade-off*" OR "trade off*" OR "tradeoffx" OR "compromisex")

We executed the queries sequentially. The results of data extraction from
the sources found with the RQ1-query became the input data for the RQ2-
queries, the results of which, similarly, became the input for the RQ3-queries.
The full search queries for RQ1, RQ2, and RQ3 as well as the process of data
collection are presented in the supplementary artifact®.

Overall, applying the search procedure with the described queries as well
as exclusion and inclusion criteria led to the identification of 206 papers, 37
of which were studied under RQ1, 73 were under RQ2, 96 were under RQ3,
and 7 were found for RQ2 but were also found for RQ3 and used to address

!Supplementary Artifact: https://figshare.com/s/57b4fa3f53caecd4asbl

it.

3.5. Data Synthesis

We now discuss the dedicated data synthesis strategies used for each
research question as well as our measures taken for ensuring consistency of
the data synthesis process.

RQ1. The coding strategy for RQ1 is based on content analysis [23] to-
gether with basic frequency analysis and taxonomic analysis [24]. First, we
employed content analysis to scrutinize the full-text papers to identify pos-
sible quality attributes relevant to ML-enabled systems. In the context of
our research, content analysis is a manual research method that examines
full texts and concepts of scientific papers, allowing us to comprehensively
detect relevant quality attributes across the studies. In order to extract a
certain characteristic mentioned in a paper as a quality attribute, we intro-
duced two main conditions: “the characteristic must be explicitly mentioned
in the paper” and “the characteristic must describe the quality of the overall
system” (not a certain algorithm or component).

In parallel, we detected that the number of identified attributes was go-
ing to be quite large, however, some of them were mentioned only in a few
papers. This fact introduces a threat to the generalizability of our findings
since such attributes can potentially describe the specifics of only one spe-
cific system. To avoid this threat, we made a scoping decision based on the
hypothesis: The more often an attribute is mentioned in different indepen-
dent papers, the more cases it covers, and therefore the more generalizable it
is. To count those mentions we employed a basic frequency analysis. Our
basic frequency analysis can be considered as a form of coding, where the
code of a quality attribute is defined as the number of papers mentioning
it. It is worth noting that all the papers had equal weight when extracting
attributes. One quality attribute could be mentioned explicitly either once
or several times in the text of the one paper, however, it did not affect the
calculated frequency. This algorithm was applied to all papers found, result-
ing in a ranked list of quality attributes. Based on the resulting counters, a
dividing line was drawn between the frequently mentioned and less frequently
mentioned quality attributes. The latter were not included in the common
quality model.

We noticed that several frequently mentioned attributes were semanti-
cally closely related (e.g., reliability and trustworthiness) or by definition

10

can be deemed a superset of several other quality attributes (e.g., maintain-
ability usually covered concerns connected to testability, transparency, and
maintainability itself). This observation motivated us to employ taxonomic
analysis and group quality attributes by semantic similarity to structure the
resulting quality model. First, we formulated high-level definitions that dis-
carded the specifics of individual papers, while retaining the fundamental
meanings of attributes. Where it was possible, we directly referred to ISO
standards ([3],[5]). In other cases we analyzed extra literature to build proper
definitions of found attributes. In the studied papers the definitions of qual-
ity attributes usually were not mentioned explicitly. Therefore, we analyzed
the selected articles again and checked whether our definitions corresponded
to the attribute meanings that were implied in them and whether they were
relevant in the context of these papers. When the definitions were formulated
in a way that satisfied all the cases, we systemized them. We distinguished
quality attributes of two levels based on a principle: “If one quality at-
tribute covers related concerns with certain other attributes and by definition
is broader than them, then such an attribute was considered a (“top-level”)
common quality attribute, while the other associated attributes were deemed
“sub-characteristics”. We note that during the research under subsequent
RQs, both common quality attributes and their sub-characteristics are in-
cluded in search queries. Therefore, the main goal of the taxonomic analysis
was to build a clearer perception of the resulting quality model, which is
presented graphically as a two-level diagram.

RQ2. Data synthesis and coding strategies for RQ2 were based exclusively
on content analysis. Our goal was to explore all relevant ATs we could find
with our search strategy for the scope of common quality attributed as de-
termined in RQ1. Therefore, we did not introduce frequency analysis or
taxonomic analysis for RQ2. We thoroughly analyzed full-text papers and
followed three conditions for extracting data as ATs: the decision must be
explicitly mentioned in a paper, the decision must be architectural in nature
(it has an impact on the architectural design principle or can be implemented
as a part of the overall system architecture) and the decision must be used
to improve some quality attribute(s). Those conditions were introduced with
a direct connection to the definition of AT used in this research (see Section
2). If an AT is described as effective in achieving multiple quality attributes,
it is associated with all affected attributes. To increase generalizability and
eliminate bias, the degree of “significance” of an architectural tactic for a

11

particular attribute was out of scope. For example, if the literature found
for RQ2 confirms that the architectural tactic of “containerization” signif-
icantly improves both maintainability and portability, then the tactic will
be assigned to both attributes, without investigation of which indicator is
improved more significantly.

We noticed that some collected tactics only affect the training system
(e.g., federated learning is usually referred to as a way of organizing model
training exclusively), while others can additionally affect other parts of the
deployed system (e.g., componentization can be the approach to overall sys-
tem design or be used only to break down the ML pipeline or even the model
into components) or be applied to the model when the system is already de-
ployed (e.g., automated bias mitigation usually monitor the outputs of model
when it operates with certain inputs). In this context, the training system
is a system associated with the ML pipeline, which operates with data for
model training, testing, and verification; while deployed system is a produced
ML-enabled system that operates with certain inputs (e.g real-time data).

ML-enabled systems may include the training system into the overall ar-
chitecture to introduce continuous retraining and improvement based on new
data [25]. However, in some cases, the training system can be relatively inde-
pendent. Therefore, we decided to introduce a classification of the identified
tactics depending on which system they affect: training or deployed. Our
findings were presented in tabular format.

It is important to note that the results obtained to some extent generalize
the experience described in the literature, which means if a tactic was de-
scribed as effective for at least one type of ML-enabled system (for example,
an [oT system), it was included in the table. Consequently, we cannot guar-
antee with full certainty optimal efficiency for other types of machine learning
systems, which is also considered in the analysis of threats to validity.

RQ3. For RQ3, we employed content analysis to identify trade-offs that in-
dicate the impact of implementing architectural tactics on quality attributes.
A full-text analysis of the papers identified through our search strategy was
performed. We reported an impact of a tactic on a quality attribute if at
least one source indicated that applying the tactic influenced metrics or other
indicators for that attribute. When all sources agreed on the impact’s di-
rection, either predominantly positive or megative, we reported it as such.
If sources reported both predominantly positive and negative impacts for
the same tactic-quality attribute combination, depending on conditions of

12

the environment or domain, we marked the impact as ambivalent. In cases
where no evidence of a correlation between an AT and a QA was found, we
noted this absence of evidence.

Data extraction consistency. Towards ensuring data extraction consis-
tency, we took three measures.

First, we followed the specific advice from the Kitchenham guidelines
for performing SLRs [20]. According to them, it sufficient to conduct “a
test-retest process where the researcher performs a second extraction from a
random selection of primary studies”. This second extraction was conducted
by Author 1 on a random sample of 10 papers for RQ1, 15 papers for RQ2,
and 20 papers for RQ3. The results of this extraction round were identical
to the previous attempt for all RQs.

Second, we continuously discussed the data synthesis and its results in
the group of authors. Author 1 strictly followed selected search and data
synthesis strategies for RQ1, RQ2, and RQ3 sequentially. Whenever a syn-
thesis of results for a particular RQ was completed, a group discussion with
all authors was organized. Author 2 and Author 3 based on their exper-
tise provided feedback on whether the search strategy was executed correctly
and whether extracted QAs, ATs, or trade-offs corresponded to selected def-
initions and conditions for their extraction. At each meeting, the review
protocol was presented and updated based on the results of the discussion.

Third, the used literary sources are shared in the publicly available sup-
plementary artifact allowing other researchers to follow our algorithm and
analyze selected papers. This also enhances the reproducibility of this re-
search.

3.6. Results Verification

All the results should be verified by the experts and practitioners to check
their relevance for industrial use. We followed several scenarios of validation
depending on the contribution.

Our findings for RQ1 which were compiled in the format of the quality
model were verified through:

1. FExpert Validation. The model was presented at the Swedish Require-
ment Engineering meeting (SIREN 2023). This event brought together
academic and practical experts with a background in the field of re-
quirements engineering and machine learning. An assessment was or-

13

ganized in a focus-group setting with oral feedback. Six experts were
surveyed sequentially on three main questions:

e If the proposed model is ‘emphcomplete, i.e. the identified qual-
ity attributes exhaustively characterize the quality of ML-enabled
systems.

e If the proposed model is general, i.e. the identified quality at-
tributes are applicable to all types of ML-enabled systems, not
only to a certain one.

e If the proposed model is relevant, i.e. the identified quality at-
tributes respond to current challenges in ML-enabled software
quality assurance.

2. Practitioner Validation. The model was presented to four ML engi-
neers from Swedish Al software companies. They checked the proposed
model against the key quality characteristics used in their enterprise
when designing Al-based systems. The validation used the same eval-
uation parameters as in the case of expert assessment: completeness,
generalizability, and relevance.

The findings for RQ2 which were combined in the final list of architectural
tactics and associated quality attributes were verified through practitioner
validation. The list of ATs was presented to four ML engineers from Swedish
AT software companies. They assessed the applicability of architectural tac-
tics to solve problems encountered in the design of Al-based systems within
their company, as well as their theoretical validity for improving system qual-
ities.

The findings for RQ3 which were summarized in the resulting table of
trade-offs were verified through internal peer-reviewing, where each co-author
checked the plausibility of the identified impact (or absence of such) based
on their expertise. This review step did not result in any changes to the
findings. An additional verification by practitioners and experts is desirable,
however, it is overly laborious for the current study due to the large number
of impacts identified. In Section 5, we propose and discuss a strategy for
such validation in future work.

14

4. Results

4.1. RQ1: Identification of Common Quality Model

We examined 37 scientific sources to obtain a comprehensive list of quality
attributes that characterize various ML-enabled systems. Table 1 provides
a list of all quality attributes found and the number of their occurrences in
all the sources studied. The list is sorted in descending order of occurrences
(#occ.) of the quality attribute in the papers.

Table 1: All retrieved quality attributes of ML-enabled systems

QA #occ. | QA #occ. | QA #occ QA #occ
Fairness 19 Efficiency 12 Ethics 6 Completeness 2
Safety 19 Usability 11 Data quantity 6 Consistency 2
Security 18 Accuracy 10 Traceability 4 Compatibility 2
Explainability 18 Testability 10 Legal 3 Accountability | 1
Privacy 17 Correctness 9 Reusability 3 Justifiability 1
Reliability 16 Func. suitability | 8 Interoperability | 3 Autonomy 1
Performace 16 Interpretability 8 Reproducibility | 2 Modifiability 1
Transperancy 14 Trustworthiness 8 Integrity 2 Elasticity 1
Robustness 13 Scalability 8 Repeatability 2 Resilience 1
Data Quality 13 Adaptability 6 Retrainability 2

Maintainability | 12 Portability 6 Modularity 1

4.1.1. Studies based on interviews and questionnaires.

Several works built models based on the results of interviews, question-
naires, and surveys with experts.

The work of Habibullah et al. [21] contains the most complete list of
quality indicators among all the papers studied. The set of QAs was formed
through interviews with practitioners in the field of developing ML-enabled
systems. The authors collected 37 quality attributes (system non-functional
requirements) relevant to product operation, product revision, and product
transition, such as efficiency, usability, portability, etc.

Vogelsang [26] identified the structure of common requirements for ML-
enabled systems: functional and non-functional based on the interview re-
sults of several data scientists. The group of non-functional requirements (=
quality attributes) included: explainability, freedom from discrimination (=
fairness), legality, data quantity, and data quality.

To build sustainable AT architectures Késtner et al. [27] indicated six main
characteristics of quality assurance based on expert assessment: performance,
data quality, testability, safety, security, and fairness.

15

Agca et al. [28] conducted a comprehensive survey on trusted distributed
artificial intelligence. The focus of that paper was not on creating a certain
quality model, however, the research addresses such quality attributes as
performance, robustness, and transparency.

Various quality models have been proposed by other authors: based on
an interview study with ML-project stakeholders [29], [30], industry experts
[31], [32], and based on the mixture of qualitative and quantitative studies
including a survey of practitioners [33].

4.1.2. Studies based on expert assessments.

There is a group of work presenting the quality characteristics of ML-
enabled systems axiomatically, i.e. the authors list them as relevant or dis-
cuss their relevance based on their own expertise. Since we are examining
exclusively scientific “white” literature, we consider the authors as experts
and find it reasonable to include such works in the list as well.

Yap [34] stated that ML systems have unique requirements arising from
the interaction with humans such as fairness, privacy, safety, and security
(covering the ML component and overall system security). The key quality
requirement in that context was trustworthiness.

Ozkaya [35] pointed out that all the knowledge and experience in de-
signing and reasoning about software systems does not immediately apply
to Al-system engineering. The author suggested security, usability, privacy,
explainability, data quality, and quantity, testability, and robustness as the
critical attributes in the successfully designed structure and behavior of Al-
enabled systems.

Zhang et al. [36] provides a comprehensive survey of techniques for testing
machine learning systems. Authors defined quality attributes as testing prop-
erties, which included correctness, memory and energy efficiency, robustness,
and others.

Truong [37] suggested applying the author’s R3E approach to evaluate the
state of end-to-end ML systems. The R3E approach consists of robustness,
reliability, resilience, and elasticity.

Kuwajima et al. [38], [15] state that all quality attributes from the stan-
dard SQuaRE model could and should be applied to the development of ML-
enabled software with additional quality attributes from ethics guidelines for
trustworthy Al from the European Commission.

Horkoff [39] summarized a selection of quality attributes presented previ-
ously in the work of Habibullah et al. [21] and created another quality model

16

consisted of eight general quality attributes: accuracy, performance, fairness,
transparency, security, privacy, testability, and reliability.

Various quality models have been proposed by other authors: particularly
for Al-chatbots [40], ML-based systems for Automotive OEM [41], Deep
Learning Systems [42], IoT systems [43], Regression-Based ML-systems [44],
and other types of Al-based systems [45], [46], [47], [48], [49], [50], [51].

4.1.3. Studies based on the other methodologies.

Some papers stem from methodologies, for example, experience reports
from particular companies, design science research of particular solutions,
applications of common standards to specific cases, or studies of community
trends.

Based on the priorities of a particular company in ML-enabled systems
development, Cysneiros et al. [52] identified several key quality attributes:
trust (a.k.a. trustworthiness), ethics, and transparency.

Washizaki et al. [53] collected “good/bad” software engineering design
patterns for ML techniques to provide developers with a comprehensive clas-
sification of such patterns. Their patterns are implemented to directly affect
quality attributes, such as performance, reliability, accuracy, and others.

Ahmad et al. [54] noticed that industry practices use tools that do not
enforce requirements engineering for Al and that there are gaps between
research and practices in RE for Al. They conclude that the engineering of
Al-systems introduced new specs that did not exist in traditional software,
which include data quality, data quantity, accuracy, and explainability.

Felderer et al. [55], [56] brought together best practices written by soft-
ware engineers and data scientists. Key quality attributes according to the
studies above were: data quality, system accuracy, correctness, interpretabil-
ity, etc.

Arseniev et al. [57] applied fundamental software engineering principles
to Al systems. They analyzed how various software teams build software
applications with customer-focused Al features and which main problems
they meet. The authors claimed that a substantial amount of effort is usually
spent on data collection and data preparation. Data quality characteristics
also reflect the quality of the Al system. In addition to data quality and
quantity, the authors worked with the reliability, scalability, and convenience
of accompaniment (in the context of the research equals maintainability).

Other practical-oriented solutions described in the scientific literature

17

were a bug benchmark [58] with key affected attributes of testability, trace-
ability and functional suitability, quality assessment and criteria analysis for
AT image recognition software [59] with an emphasis on data quality and
robustness, compositional approach to creating architectural frameworks for
distributed AT systems [60], explaining models in Al [61], ontology-based
modeling and analysis of trustworthiness [62], ensuring dataset quality [63]
and other works that operated with quality attributes [64], [65].

4.1.4. Synthesized quality model.

A contextual cut-off line between “frequently mentioned” and “infre-
quently mentioned” attributes was drawn based on the number of their men-
tions in the scientific literature according to the rule: “If the number of
occurrences was greater than 4 then the quality attribute was recognized as
frequently mentioned, otherwise, as infrequently mentioned”.

The next step was to combine semantically similar frequently mentioned
attributes into common quality attributes (CQAs).

Some authors used the term “performance”, which implied “system ac-
curacy” or “resource efficiency” depending on the context and to avoid mis-
understandings, we divided this term into the above two groups during the
data extraction process.

We noticed that the papers that mentioned the quality attribute of “effi-
ciency” used it to describe four different cases: efficiency in terms of running
time, efficiency in terms of memory costs, efficiency in terms of energy con-
sumption, or accuracy of system output. The first three cases were excep-
tionally considered as subcharacteristics of resource efficiency, while the last
one was also included as the “system accuracy”.

A review of the literature showed that “correctness” and “functional suit-
ability” were often used as contextual synonyms; “usability” was a separate
attribute from any other; terms “trustworthiness”, “reliability”, “safety”,
“robustness” and “scalability” were of the same nature; “privacy” was pre-
sented as a subset of “security”, “maintainability” consisted of “system trans-
parency”, “testability” and “maintainability” itself; “portability” and “adapt-
ability” were the attributes of the same nature; “explainability” and “inter-
pretability” described by highly-related spectrum of issues, “fairness” and
“ethics” were used as synonyms with the rare exceptions of non-standard
terminology when “fairness” characterized the “trustworthiness” of model’s
predictions; “data quantity” was often considered as a special characteristic
of the overall “data quality”.

18

The result of the semantic unification of frequently mentioned attributes
into common quality attributes and their sub-characteristics is presented in
Figure 1.

[Proposed Quality Model]

[’;‘;’:f;é‘;:‘ﬂ[gﬁiﬁ:;ﬁi Ai{f“;’;‘y} [UsabilityM Reliability } [Security J [Maintainahility} [Fortability] [Explainability} Faimess} [Da(a Quality

Correctness
Ethics

2
H
©
]
2

Scalability
Reliability
Maintainability
Portability
Adaptability
Interpretability
Explainability
Data Quantity

£
s
i
(<]
£
©
a

Accuracy
Testability
Transperancy

2
£
[]
=
=5
7]
2
c
g
3
£
=1
w

Time Efficiency
Energy Efficiency
Memory Efficiency
Robustness
Trustworthiness

Figure 1: Proposed Quality Model for ML-enabled Systems

Our quality model comprises the following high-level common quality at-
tributes: Functional suitability is the degree to which a system corresponds
to functional requirements. Resource efficiency is the degree to which a
system fulfills a given functionality within an existing amount of hardware
capacities. System accuracy is the degree to which a system performs and
analyzes the contextual environment and refers to the performance of the
entire system in real-world conditions, including model inference and data
post-processing. Particularly, system accuracy is different from model accu-
racy, which specifically measures the predictive performance of the trained
machine learning model on a given dataset. Usability is the degree to which
a system can be employed by end users to achieve specified goals. Reli-
ability is the degree to which a system performs specified functions under
specified conditions in the fixed domain. Security is the degree to which a
system protects information and data. Maintainability is the degree to which
a system can be modified and supported by developers and maintainers to
achieve specified goals. Portability is the degree of effectiveness with which
a system can be transferred from one domain, software, or hardware basis
to another. Fxplainability is the degree to which the behavior of a system
(primarily, the behavior of ML models) and its output can be explained by
humans. Fairness is the degree to which a system can detect and prevent an
algorithmic bias created by a model. Data quality is the degree of integrity
and sufficiency of data for model training, testing, and validation, including
the reliability of the related data sources.

19

4.1.5. Verification of the quality model.

The developed quality model was presented to six experts at the Swedish
Requirements Engineering Meeting (SIREN 2023) in Gothenburg, Sweden
organized by Chalmers University of Technology. Four experts out of six
participants rated the model as fully complete, general, and relevant. One
participant pointed out that the proposed model lacks the “compatibility”
attribute (with reference to ISO 25010:2011 [3]). According to the used
methodology, this attribute was rarely reported in the literature (only 2
times). This fact did not allow us to include it in the final model. This fact
was considered as a threat to validity in Section 5. The last expert noted
that the selection of terms for quality characteristics is not as important as
specific metrics and ways to achieve them, however, they fully supported the
proposed model in terms of completeness, generalizability, and relevance.

Further, the model was presented to four ML engineers from Swedish Al
software companies. They conducted a theoretical comparison of the qual-
ity attributes we found with the system qualities considered by them when
designing real Al solutions. Three of the practitioners concluded that the re-
sulting model fully exhausts the quality of all the systems developed in their
company and is relevant nowadays. The last expert noted the importance of
compliance of the developed solutions with all the quality attributes we iden-
tified, as well as with the business goals of stakeholders. According to our
findings, meeting business requirements can be expressed in both functional
and non-functional requirements. Each NFR can be ranked according to the
identified quality attributes, while strict adherence to the functional require-
ments corresponds to the identified “functional suitability” attribute. After
clarifying the context and terminology, the expert agreed that the proposed
model was complete, general, and relevant.

4.2. RQ2: Architectural Tactics

In Table 2 we present our findings under RQ2 and provide a correspon-
dence in the format of “quality attribute - architectural tactic(s)”. We high-
light that the table presents only common quality attributes without sub-
characteristics, but they were considered in the search strategy, the details
of which can be found in the supplementary artifact!. Each AT is charac-
terized by its scope as either training system (TS), deployed system (DS)

!Supplementary Artifact: https://figshare.com/s/57b4fa3f53caecd4a5bl

20

or both. Note that the TS can generally be included as a subsystem in the
DS (e.g., in systems that support retraining); in such cases, DS refers to the
tactic being applicable to other subsystems than the TS.

We note that the “functional suitability” attribute was not included in
the summary table for two reasons: this attribute is general in meaning (all
ML-enabled systems must follow functional requirements), but not general
in the ways of its achievement (for each system there is a unique set of
functional requirements), and also because we were unable to find common
architectural tactics to satisfy this attribute with the selected methodology.

Table 2: Architectural Tactics to Achieve Common Quality Attributes (CQA)

CQA Tactic Scope | CQA Tactic Scope
Resource - Distributed Learning TS Data - Data Preprocessing TS/DS
Efficiency - Federated Learning TS Quality - Data Profiling TS

- Automated Data Reduction TS/DS
System - Automated Hyperparameter Tuning | TS Explainability - Local Interpretable Models | TS/DS
Accuracy - Automated Algorithm Selection DS - Rule-based Models TS/DS
Usability - Human-in-the-Loop TS/DS | Maintainability | - Componentization TS/DS

- Containerization DS

Security - Intrusion Detection TS/DS | Fairness - Automated Bias Mitigation | DS

- Automated Data Encryption TS/DS

- Federated Learning TS
Reliability | - Automated Data Versioning TS/DS | Portability - Containerization DS

- Human-in-the-Loop TS/DS - Componentization TS/DS

TS = Training System; DS = Deployed System

Below we provide detailed explanations of all the tactics found. To in-
troduce a basic understanding of how each tactic can be implemented, we
supplement all the tactics with one example of its implementation from the
literature.

4.2.1. Tactics associated with Resource Efficiency.

The ATs to increase resource efficiency were aimed at distributing and
reducing resource-intensive processes. The first architectural tactic we found
was an approach to distribute the powers for model processes among several
computers as known as Distributed Learning. Shi et al. [66] described dis-
tributed deep learning as a time and resource-efficient approach to designing
the machine learning process. Considering the context in which this tactic is
useful, Rao et al. [67] based on the experiments concluded that distributed
learning is effective when there is a need to allocate training loads evenly. The
implementation of distributed logic itself (building extra connections) does

21

not sufficiently affect the overall resources consumed. Other papers men-
tioned that traditional centralized architectures are time-consuming in the
domains of biomedical images [68], photonic nanostructures [69] processing
and could be replaced with the distribution of loads.

For example, Rao et al. [67] developed a distributed learning mechanism
that enables self-adaptive resource provisioning by treating each virtual ma-
chine as a highly autonomous agent that submits resource requests based on
its benefit.

The next explored tactic was Federated Learning (FL). In contrast with
the centralized approach, FL shifts the computational load to the user equip-
ment. While distributed learning involves training models collaboratively
across decentralized nodes with mostly shared data, federated learning specif-
ically focuses on training models mostly on local data. Considering applica-
tion contexts, FL. can be profitable when there is a need to lighten the load
on the server [70] during model training.

For example, Brisimi et al. [71] developed a federated learning framework
that can learn predictive models through peer-to-peer collaboration without
raw data exchanges solving a binary supervised classification problem to
predict hospitalizations based on clients’ data.

Finally, we found the tactic of automated data reduction relevant for re-
source efficiency. This tactic can be used in the ML pipeline to reduce train-
ing data [72] or to reduce large amounts of input data in real-time when
the system is deployed and operates [73]. Considering application context,
this tactic is useful in systems with massive amounts of data, such as those
in the Internet of Things (IoT) [72] domain. The main perspectives of big
data reduction are noise-cleaning and addressing the “curse of dimensional-
ity” caused by millions of variables in big datasets [73]. In terms of limited
resources, this tactic can be the only way to run the system [74].

For example, Rehman et al. [73] collected different methods of automated
data reduction in the form of big data compression algorithms, dimension
reduction methods, and redundancy elimination.

4.2.2. Tactic associated with Usability.

With our search strategy we could identify only one AT for increasing
the usability of ML-enabled systems, which was the integration of a hu-
man as a system component, so-called “human-in-the-loop” (HitL). Petrelli
et al. [75] stated that usability indicators of Al-based systems were suffi-
ciently improved after the integration of so-called “interaction designers”

22

into the processes. They acted as experts to coordinate reciprocal under-
standing. Winter et al. [76] and Kroll et al. [77] viewed close interaction
and co-integration between users and the model as mutually beneficial. The
user becomes more proficient in using machine learning for their tasks and
gets a clearer picture of basic Al principles, while their feedback can serve
as a basis for improving the system in terms of usability as well as fairness,
explainability, and data quality. According to Heimerl et al., [78] integra-
tion of experts in the training system (when the experts manually evaluate
and update training datasets) is as beneficial in terms of usability as their
integration in the deployed system (when they evaluate system outputs).
Sperrle et al. [79] proposed a human-centered approach to the evaluation of
ML-enabled systems and highlighted the necessity of HitL to improve sys-
tem usability. Considering the application context, the tactic is especially
relevant for accessibility-critical systems [75] or systems primarily oriented
toward the end users [78].

For example, Gomez et al. [80] noticed that the ML-enabled system in
a specific case overlooked human factors (such as human workload or tim-
ing) which were critical for end-users. To address this issue, the model was
replaced with an adaptive one to consider parameters provided by specific
users.

4.2.3. Tactics associated with Reliability.

To address system reliability or its sub-charateristics we found an AT
of Data Versioning. Lewis et al. [81] conducted a complex study on archi-
tectural challenges in ML-enabled systems and among other fundamental
conclusions, stated that the technique of data versioning can be effective in
improving reliability and robustness that serves as a safety net in case of
unexpected failures during data processing. This aspect covers mostly the
training system. However, in addition to versioning of datasets, it is also
important for architects to consciously version related artifacts, such as pa-
rameters for model training, data for model evaluation, and evaluation results
(“co-versioning”) [82]. Warnett et al. [83] proposed the versioning of output
data when the system is operating to ensure the traceability and integrity of
results, allowing for the accurate tracking of changes in outputs over time.
Considering the application context, such a tactic is relevant for all systems
where multiple versions of a model could be deployed, either over time or
even in parallel [84].

For example, Van et al. [82] used data versioning in the format of sav-

23

ing and storing different versions of end-to-end machine learning pipelines
(including datasets for data processing pipelines and model coefficients for
model training pipelines) to ensure that multiple versions of a pipeline can
run in parallel.

Another tactic to address reliability and safety concerns was previously
introduced Human-in-the-Loop (HitL). Rajendran et al. [84] stated: “The
involvement of humans during the training phase can play a crucial role in
mitigating some safety issues of autonomous systems”, although it can also
lead to extra expenses for the vendor. Considering application contexts,
integrating expert users is reasonable to validate solutions that need to be
available at sufficient capacity [84].

For example, Rajendran et al. [84] explored different integrations of ex-
perts as components to improve the reliability of deep learning autonomous
systems such as “learning from demonstration”, “learning from intervention”,
and “learning from evaluation” to deal with unforeseen circumstances and
define safer policies.

4.2.4. Tactics associated with Security.

The most frequently considered AT for improving security was the in-
tegration of Intrusion Detection. Sanju [85] claimed: “The protection of
[oT systems from attacks and the assurance of their security posture is en-
sured by intrusion detection systems”. Liu et al. [86], Qu et al. [87], Laqtib
et al. [88], Rashid et al. [89], Balbali et al. [90] listed several fundamental
benefits of using intrusion detection as microservices in the architecture of
industrial IoT for enhancing security. Intrusion detection is mainly used for
preventing data poisoning (where exclusively the training system is under
attack)[89] and adversarial attacks (where minor malicious changes in input
data can cause the model to make incorrect predictions) [87]. In comparison
with traditional software, intrusion detection in ML-enabled systems is more
flexible and adapted to changes due to possible different outputs produced
by the model over time or new behavior of the model caused by retraining.
Considering the application context, the tactic is useful for systems operat-
ing with large amounts of real-time input data or big datasets consumed by
training system [88], including IoT systems [85].

For example, Sanju et al. [85] introduced a hybrid metaheuristics-deep
learning approach with an ensemble of recurrent neural networks to detect
and prevent intrusions in real-time data processing in an operating IoT sys-
tem.

24

Another identified AT was Automated Data Encryption. McGraw et
al. [91], Bekri et al. [92] when analyzing risks for the security of ML-enabled
systems, highlighted the important role of encryption of training and test-
ing datasets to protect from several threats primarily. Wu et al. [93] found
big data encryption efficient for system security, however, some encryption
methods may not be optimal also for privacy by default. Kantarcioglu et
al. [94] along with several non-architectural decisions, found data encryption
as one of the ways to satisfy security requirements in industrial solutions
when it comes to ensuring the security of all data flows within a deployed
system. In addition to the encryption of datasets and input data, the encryp-
tion of the model parameters and weights should be conducted. Considering
the application context, the implementation of this tactic is especially rel-
evant for highly sensitive systems that operate continuously [92], including
privacy-preserving deep learning systems [95].

For example, Phong et al. [95] proposed additively homomorphic encryp-
tion to increase the privacy and security of neural networks by allowing com-
putations to be performed on encrypted data without decrypting it, thus
protecting sensitive information throughout the processing stages.

Finally, an effective tactic to architecturally increase privacy and security
is an implementation of Federated Learning (FL). In addition to the benefits
of this tactic for resource efficiency, it is commonly used to “train a massive
amount of data privately due to its decentralized structure” [96]. Zhou et
al. [97] proved the statement above: ”The emerging federated learning (FL)
offers a feasible solution for the privacy preservation of users’ sensitive data in
training AI models”. In other words, federated learning allows the benefits of
data privacy without the need for data to be shared with a central server [98],
[99]. Considering the application context, this tactic is useful for privacy-
critical systems [98, 99|, including personalized big data systems [97].

For example, Zhou et al. [97] implemented a federated learning algorithm
that ensures that sensitive data is not disclosed during model training to-
gether with a user-level personalized differential privacy mechanism.

4.2.5. Tactics associated with Maintainability.

For both traditional and ML-enabled systems, the architectural tactic
of Containerization has shown its effectiveness in terms of maintainability
and system transparency. Rovnyagin et al. [100] explicitly claimed the pos-
itive effect of containerization along with related tools (such as docker or
orchestrator) on system maintainability and operability. Kolltveit et al. [101]

25

stated: ”Models packaged in containers are simply run directly as standalone
services” which contributes to the enhancement of maintainability. Accord-
ing to Openja et al. [102]: "Docker (which is a containerization service)
allows for convenient deployment of websites, databases, applications’ APIs,
and machine learning (ML) models with a few lines of code”. Finally, con-
tainerization allows applied scientists without advanced knowledge to deploy
models and access High-Performance Computing (HPC) [103]. Considering
the application context, this tactic is useful for systems that require more
isolated dependencies and simplified updates [100, 101, 102]

For example, Openja et al. [102] identified 21 major categories repre-
senting the purposes of existing ML projects using Docker, including those
specific to ML models, which in turn reduces the complexity of managing
ML models.

Another efficient tactic for enhancement of system maintainability was
Componentization, which obviously contributes to more transparent testing
[104]. The componentization can be applied to the overall deployed system
architecture, or exclusively to the training system, or even exclusively to a
model. Singravel et al. [105] stated that ”Component-Based Machine Learn-
ing (CBML) enhances the capabilities of the monolithic ML models” in terms
of transparency. Considering the application context, this tactic is relevant
for systems that require constant monitoring and updates from the side of
developers or maintainers.

For example, Singravel et al. [105] transformed the monolithic ML model
in the domain of space exploration into a set of connected components which
simplified its further maintenance.

4.2.6. Tactics associated with Portability.

According to the literature review, both tactics associated with maintain-
ability were also profitable for portability.

Componentization is a relevant architectural tactic for increasing porta-
bility [106]. Shadab et al. [107] reported that the development of Al logic in
the format of reusable components could be an adequate solution to increase
portability, however, it also may introduce new risks since ”currently there is
no framework that guides the selection of necessary information to operate
in a system different than the one for which the component was originally
purposed”. Geyer et al. [108] concluded that components instead of one
monolithic model extend reusability and generalization, which in the context
of our research directly contributes to the quality of portability. In terms

26

of portability, both componentization of the overall architecture as well as
dividing the ML model into components are profitable. Considering the ap-
plication context, this tactic is useful for cross-platform compatible systems
that are partly or fully transferred from one software or hardware base to
another [106] as well as to systems that are transferred from one environment
to another [108].

For example, Geyer et al. [108] replaced monolithic models with a component-
based approach that develops machine learning models not only for the pa-
rameterized design of the whole buildings in the construction domain but also
for the design of its semi-independent parts on the lower level of abstraction.

The tactic of Containerization also improves the portability of ML-enabled
systems by encapsulating all dependencies and configurations [109]. Consid-
ering the application context, this tactic is useful for cross-platform compat-
ible systems, including cloud-based services [110].

For example, Naydenov et al. [109] studied different container technologies
used in ML-enabled systems, such as K8s, K3s, Docker, Rancher, and others
allowing the systems to run consistently across different platforms, such as
local machines or cloud servers.

4.2.7. Tactics associated with FExplainability.

Local Interpretable Models (LIME) are a tool for solving issues of ex-
plainability (XAI) and interpretability [111], [112], by approximating the
behavior of a complex underlying model around a specific prediction using a
simpler local model that can explain the prediction. The intended applica-
tion context of LIME is a system with a “black-box” model that is inherently
non-interpretable, such as a neural network obtained by deep learning [113].
Such complex models cannot be avoided in domains that deal with partic-
ularly complex phenomena, such as weather forecasting [114] and intrusion
detection [115], where LIME is particularly useful. LIME is model-agnostic,
which means it can be applied to any ML model without knowing its inter-
nals as it only requires access to prediction probabilities. Integrating LIME
into a training system can help explain how the model comes to conclusions
before deployment and help with the selection of the final model to be used
in production. It can be also used in an already deployed system to explain
the behavior of the existing model [116].

For example, Saadatfar et al. [116] proposed a LIME algorithm that gen-
erates more focused data samples close to the decision boundary and simul-
taneously close to the original data point in comparison with different LIME

27

implementations, such as BayLIME, SLIME, and LS-LIME.

Another widespread tactic found was the usage of Rule-based Models
[117], [118]. While LIME explains individual predictions of complex models
by fitting simpler models locally around specific instances, rule-based mod-
els directly encode prediction rules that are clear for a human [119]. The
intended application context is one where that permits such rules to be for-
mulated, which then inherently leads to explainability and interpretability,
and can make rule-based models favorable over more complex ones, espe-
cially for non-complicated tasks [120]. Rule-based models can also be used
for rule-based approximation and visualization [121]. This AT can be also
used in both training and deployed systems [122].

For example, Rajapaksha et al. [122] developed a model-agnostic rule-
based approach that obtains k-optimal association rules from a neighborhood
of the instance to be explained.

4.2.8. Tactics associated with System Accuracy.

Automated Hyperparameter Tuning can be especially profitable in increas-
ing model(s) accuracy resulting in the enhancement of the overall system ac-
curacy. It is well-known that the accuracy of machine learning models relies
on hyperparameter tuning [123]. Daviran et al. [124] stated: ”The predictive
accuracy of models can significantly increase when the optimized hyperpa-
rameters are predefined and then adjusted to training procedure”, which, in
this tactic, is an automated process. Considering the application context,
this tactic is especially valuable for systems with complex models or large
datasets where manual tuning is ineffective, including deep learning systems
[125].

For example, Ottoni et al. [125] proposed a framework for automated hy-
perparameter tuning and based on the experimental results proved that this
tactic sufficiently improved different accuracy metrics of an image recognition
deep learning system.

Another tactic for system accuracy is an Automated Algorithm Selection.
Kerschke et al. [126] proposed their implementation of automated algorithm
selection from a pre-defined set of algorithms and noted that the choice might
be made not only to maximize the accuracy but also based on other contex-
tual priorities. Pise et al. [127] listed several key factors that must be con-
sidered in a proper algorithm selection tactic. Such a tactic fundamentally
improves accuracy in healthcare and medical systems as well [128], [129].
Considering the application context, this tactic is generally useful for the

28

systems in which high accuracy is particularly important [126, 127, 130],
and more specifically in systems operating in constantly changing environ-
ments [130].

For example, Alissa et al. [130] proposed a technique for automated algo-
rithm selection, applicable to certain optimization domains in which implicit
sequential information is encapsulated in the data. Specifically, they trained
two types of recurrent neural networks to predict a packing heuristic.

4.2.9. Tactic associated with Fairness.

Automated Bias Mitigation is a common term for a set of algorithms de-
veloped to increase the fairness of the deployed ML-enabled system outputs.
Lee et al. [131] conducted a review of so-called fairness toolkits with the
analysis of their relevance in improving system outputs from the ethical per-
spective. Ferrara et al. [132] suggested that ”building specific methods and
development environments, other than automated validation tools, might
help developers treat fairness throughout the software lifecycle”. Other algo-
rithms for automated bias detection and mitigation were proposed by Agar-
wal et al. [133], Castelnovo et al. [134] and Zhang et al. [135]. Considering
the application context, this tactic is primarily useful for the systems oper-
ating with personal data and sensitive parameters [113], in particular those
that are not inherently interpretable, such as deep learning systems [113].

For example, Maan et al. [113] proposed a method that evaluates the
fairness of deep learning model behavior against sensitive attributes (i.e. age,
race, gender, sex, and so on) to help mitigate biases without compromising
much on accuracy.

4.2.10. Tactics associated with Data Quality.

The tactic of Automated Data Profiling is considered an effective tool to
increase data quality in the domain of ML-enabled systems [136]. Data pro-
filing contributes to the training system allowing the identification of missing
values and the detection of outliers and anomalies. Considering the appli-
cation context, this tactic is generally useful for systems that deal with het-
erogenous and complex data and, therefore, require comprehensive evaluation
to ensure sufficient data quality for training a high-quality model, including
domains such as cybersecurity [137], digital twins [138], and healthcare sys-
tems [139].

For example, Pansara et al. [140] proposed to employ extra machine learn-
ing algorithms to automatically profile and cleanse master data for complex

29

model training operating in the domain of environmental sustainability.

While data profiling implies examining the structure and the content
of data to understand its features, Automated Data Preprocessing includes
data cleaning and data transforming to prepare it for analysis. Gawhade et
al. [141] and Ramkumar et al. [142] proposed computerized data preprocess-
ing algorithms to primary process input data before it enters the ML model
in the deployed system. Santos et al. [143] suggested another implementa-
tion of automated data preprocessing used for the preparation of training
datasets in supervised machine learning. In terms of ML-enabled systems,
data preprocessing includes data splitting (dividing data into training, test-
ing, and validation datasets). Considering the application context, this tactic
is necessary for all types of ML-enabled systems that are going to be trained
on unprepared datasets [143] or that operate with raw data on the input
[142].

For example, Bilal et al. [144] proposed an automated pipeline for ad-
vanced data preprocessing steps of target discretization and sampling which
are validated using RandomForest.

4.2.11. Definitions of Architectural Tactics.

Below we present brief contextual descriptions of all architectural tactics
found. These definitions were built based on the experience from literature
and brought to the common format (relevant for all studied papers despite
specifics and context).

AT1: Distributed Learning is an architectural approach to machine learn-
ing aimed at parallelizing computing powers among several computers [67].

AT?2: Automated Data Reduction is an automated process aimed at min-
imizing the complexity and size of datasets while preserving their essential
information (widespread in IoT) [72].

ATS: Federated Learning is an architectural approach to machine learning
aimed at training on local heterogeneous datasets [70].

AT4: Human-in-the-Loop (HitL) is an architectural approach where a
human (expert) is integrated into the ML-enabled system as a separate com-
ponent aimed at monitoring and improving the system’s behavior [75].

AT5: Automated Data Versioning is an automated process aimed at
the creation, tracking, and management of different versions or iterations
of datasets used for model training, testing, and validation [83].

ATG6: Intrusion Detection is a tactic for complex systems (primarily, IoT
systems) aimed at the detection and classification of network intrusions and

30

anomalies [85].

AT7: Automated Data FEncryption is an automated process aimed at
securing sensitive data used for training, inference, or model deployment to
protect it from unauthorized access [91].

ATS: Containerization is an architectural approach aimed at packaging
an entire system or model (incl. its dependencies and runtime environment),
into a standardized unit called a container [100].

ATY9: Componentization is an architectural approach aimed at breaking
down a software system into modular components or building blocks that
can be independently developed, tested, and deployed [106].

AT10: Local Interpretable Models (LIME) is an approach to machine
learning aimed at explaining black boxes by approximating the behavior
of a complex model around a specific prediction using simpler (more inter-
pretable) models [111].

AT11: Rule-based Models is a type of model that relies on explicit rules
(i.e. if-then) that are designed and specified by humans or domain knowledge
to approximate complex model behavior [118].

AT12: Automated Hyperparameter Tuning (or Hyperparameter Optimiza-
tion) is a method aimed at searching for the best hyperparameter values for
the model based on certain criteria [125].

AT13: Automated Algorithm Selection (or Algorithm Configuration) is
an automated process aimed at searching the most appropriate method(s)
for a certain task or in certain circumstances [126].

AT14: Automated Bias Mitigation is an automated process aimed at
identifying and reducing bias in algorithms, models, and datasets by their
evaluation through fairness metrics or ”sensitive” feature monitoring [132].

AT15: Automated Data Preprocessing is an automated process aimed at
preparing raw data for analysis and model training [136].

AT16: Automated Data Profiling is an automated process aimed at ana-
lyzing and summarizing the characteristics of a dataset to gain insights into
its structure, quality, and distribution [141].

4.2.12. Verification of the architectural tactics.

All authors of this article were conducting constant peer-reviewing of the
resulting list of ATs. During weekly meetings, architectural tactics were dis-
cussed against identified quality attributes based on the expertise of each
co-author. During the validation, issues related to the architectural nature

31

of the identified artifacts and the advisability of classifying them as tactics
were discussed. In other words, based on the studied literature we checked if
the artifacts affected the overall principle of architectural design (e.g., com-
ponentization) or could be integrated as constituent parts into the overall
system architecture (e.g., automated bias mitigation module). In this paper,
we presented a list of ATs agreed upon by all co-authors of this work.

Further, the list of ATs was shared with four ML engineers from Swedish
Al software companies. One practitioner stated that he had experience with
all of the suggested tactics to ”a greater or lesser extent” except federated
learning. He concluded that, based on his experience, all of the tactics pre-
sented were relevant to the quality attributes associated with them with an
exception for federated learning. Due to insufficient expertise, the inter-
viewee could not confirm or deny this connection. The second practitioner
had a similar background and experience with all of the tactics listed except
federated learning. He concluded that the list of tactics was accurate and
consistent with quality attributes, however, he noted that the list was not
complete. He proposed supplementing the list with the tactic of “code ver-
sioning” to improve reliability and maintainability. Using our methodology,
we were unable to find this tactic relevant in the literature. However, from
a practical point of view, we see the importance of this remark. It requires
additional assessment and refinement of the search string. The other two
experts confirmed their experience in employing all the listed ATs and found
all of them relevant in the context of corresponding QAs. They provided
several organizational decisions on how to improve resource efficiency and
fairness (e.g., evolution of developing culture), however, they struggled to
propose any additional ATs to this list.

To enhance the generalizability of verification results, it is preferable to
continue validating the list of ATs by experts and practitioners. We antici-
pate that the list of architectural tactics will expand as we receive feedback
from experts. We see great potential in updating the list of tactics and
further exploring new entries.

4.3. RQ3: Trade-off analysis
Table 3 represents the summary of our findings obtained during the sys-
tematic literature review to answer RQ3.

Below we provide an analysis of the papers which investigate quality
trade-offs of the identified architectural tactics.

32

Table 3: Trade-off analysis: impact of Architectural Tactics on Quality Attributes

Quality Attribute AT1 | AT2 | AT3 | AT4 | AT5 | AT6 | AT7 | AT8 | AT9 | AT10 | AT11 | AT12 | AT13 | AT14 | AT15 | AT16
Resource Efficiency + + + 0 0 - - - 0 + 0 - - - a 0
Usability + 0 0 + 0 0 0 0 0 0 0 0 0 0 + +
Reliability 0 0 a + + + + + + - 0 + + a - +
Security a 0 a a 0 + + - 0 0 0 + 0 0 + +
Maintainability 0 0 0 + + 0 0 + + + 0 0 + 0 + a
Portability + 0 0 0 0 0 0 + + 0 0 + 0 + 0 0
Explainability 0 0 + 0 - 0 0 + + + 0 - 0 + 0
System Accuracy 0 - - 0 0 0 - 0 + - - + + - a +
Fairness - 0 + 0 0 0 0 0 + 0 + 0 + a 0
Data Quality 0 + 0 + + + 0 0 0 0 0 a + +

+ = predominantly positive impact, — = predominantly negative impact, a = ambivalent impact, 0 = insufficient evidence either way

4.8.1. AT1: Distributed Learning.

Distributed learning can have positive side-effects on system usability by
enabling learning across multiple nodes, thereby enhancing responsiveness
and adaptability to diverse user needs [145]. However, the impact of dis-
tributed learning on privacy (in the current context: on security as well) is
controversial. On the one hand, due to their distributed nature such systems
are more stable in terms of security since they do not rely only on one server
[146] and they can be profitable to preserve privacy due to the essence of de-
centralized nodes without a necessity to share sensitive information centrally
[147]. On the other hand, issues with data confidentiality, security breaches,
and potential misuse of personal information are connected to increased ex-
posure of sensitive data across those decentralized nodes [148], [149]. The
positive impact of distributed learning on portability is proved by its ability
to transfer and deploy trained models across different computing environ-
ments and devices [145]. The negative impact of distributed training on
explainability arises from the difficulty of tracking and understanding how
individual augmented data from different nodes influence the final results of
the model [150]. Finally, representation across decentralized nodes can lead
to biased model outputs and unequal treatment of different demographic
classes [151].

4.8.2. AT2: Automated Data Reduction.

In addition to the obvious improvement in reducing the load on system re-
sources, automated data reduction tactics also have some limitations. Any in-
terventions in datasets can be risky, especially for complex (low-explainable)
models. First of all, such a tactic may decrease system accuracy due to the
potential loss of important data during the reduction process [152]. The risks

33

of incorrect perception of data by the algorithm and classification of useful
data as noise or outlier is an obvious risk for data quality and quantity when
implementing this tactic [153], [154].

4.8.8. AT3: Federated Learning.

In RQ2 we identified that federated learning is often used for increasing
security and privacy particularly, however, some papers found for RQ3 by
Shen et al. [155], Jeong et al. [156], Jagarlamudi et al. [157] and Shin et
al. [158] point to the practical insecurity of existing implementations of fed-
erated learning and noted severe vulnerabilities associated with data leakage
or inference attacks during the decentralized model training across multiple
devices: ”existing federated learning protocol designs have been shown to
be vulnerable to adversaries within or outside of the system, compromising
data privacy” [159]. Therefore, based on the development level of federated
learning at the time of writing the current paper, its impact on security and
privacy is recognized as controversial. The reliability of federated learning
systems can be considered ambivalent. On the one hand, ”federated learning
resulted in a reliable strategy for model development” [160] due to its capa-
bility to incorporate diverse and decentralized data sources. On the other
hand, potential communication bottlenecks and data heterogeneity across
devices lead to severe challenges in terms of robustness [159], [161], [162].
Some risks of federated learning are also connected to system accuracy due
to the aggregation of diverse and potentially noisy local data from distributed
devices and fairness due to insufficient diversity of data collected [163]. Such
challenges also affect overall system data quality.

4.8.4. AT4: Human-in-the-Loop (HitL).

The effect of HitL on security and privacy is controversial. On the one
hand, integration of human intelligence as a system component can bring
the benefit in guiding the XAl-enabled system and generate refined solu-
tions in terms of vulnerability detection [164], [165], and on the other hand,
”the involvement of humans results in an external and unpredictable element
that increases security concerns” [166]. Human-in-the-Loop is a unique ele-
ment that plays a crucial role in the human-centered system qualities such
as maintainability by intelligently tracking changes and intermediate results
over time [167], explainability by leveraging bidirectional symbiotic sensing
feedback [168], [169], [170] and fairness by identifying sensitive data and
parameters [171], [172], [173]. Finally, data quality can be significantly im-

34

proved based on the feedback constantly provided by analysts and engineers
[174].

4.8.5. AT5: Automated Data Versioning.

Automated data versioning can enhance the maintainability of ML-enabled
systems by ensuring reproducibility and traceability of model training and
inference, which simplify debugging and model updates [175], [176].

4.8.6. AT6: Intrusion Detection.

Intrusion detection in IoT systems can negatively affect resource efficiency
due to the high computational and memory requirements of deep neural
networks [177], [178]. While ”an intrusion detection system is a promising
automotive security enhancement”, it also improves anomaly detection ca-
pabilities, thereby improving overall system robustness by reducing the risk
of non-security-related failures and errors [179]. The inherent complexity of
deep neural networks for intrusion detection negatively affects the explain-
ability of the overall often low-explainable IoT systems [180], [181]. Finally,
identifying and removing unnecessary data from the datasets significantly
contribute to the data quality on a system level [90], [109].

4.8.7. AT7: Automated Data Encryption.

Data encryption in ML-enabled systems can negatively impact resource
efficiency by increasing computational overhead and latency due to the ad-
ditional processing requirements for encryption and decryption [182], [183].
The positive side-effect of data encryption in terms of reliability appears due
to ensuring data integrity and reducing the risk of data corruption [184].
Wang et al. [185] noted a slight decrease in the system accuracy of the en-
crypted model in comparison with non-encrypted solution. Any data pro-
tection tactic also makes a significant contribution to overall data quality
[186].

4.8.8. ATS8: Containerization.

The main challenge of containerization in terms of resource efficiency
arises from the potential resource overhead of container orchestration and
virtualization [187], [102]. However, such a tactic has a positive side effect
on system reliability by providing a consistent and isolated runtime environ-
ment [187]. Figueroa et al. [188] claimed: ”Combined with [oT, containeriza-
tion allows efficient allocation, fast execution, and deployment of hardware

35

resources”. According to Joraviya et al. [189]: ”Containerization has intro-
duced new security challenges including cloud data breaches in ML-enabled
systems”, which is also accompanied by increased attack surface and po-
tential misconfigurations including increasing risks of data breaches, model
theft, and adversarial attacks due to shared resources, image vulnerabilities,
and insufficient isolation, making strict access control and monitoring essen-
tial. Finally, it has a positive effect on data quality due to its ability to
facilitate consistent data handling and processing environments [190].

4.8.9. AT9: Componentization.

With our search strategy we could not find any evidence that componen-
tization has any crucial impact on resource efficiency. However, we found a
positive impact of this tactic on the reliability of IoT systems [191] by en-
abling the implementation of safety-critical components with clear interfaces
and well-defined behaviors. At the same time, this tactic is reasonable to iso-
late specific model components to improve explainability and interpretability
[192]. Finally, based on the experimental results Heisele et al. [193] concluded
that "the component system clearly outperformed global systems on all tests
in terms of accuracy”.

4.8.10. AT10: Local Interpretable Models (LIME).

The work of Kumarakulasinghe et al. [194] significantly contributed to
the analysis of trade-offs when applying local interpretable models. Accord-
ing to this study, LIME provides interpretable and simple local explanations
without a need for resource-intensive global model explanations, which in
some cases is really profitable for resource efficiency. This tactic of simplifi-
cation also contributes to improvements in maintainability. However, it goes
in contrast with reliability, where LIME brings the risks of potentially in-
correct local explanations that do not accurately reflect the overall behavior.
Mori et al. [195] also found this fact a reason for misleading interpretations
and decisions (which is considered a negative impact on system accuracy).
At the same time, LIME can be used to assess a classifier’s fairness and to
determine the sensitive features to remove [196].

4.8.11. AT11: Rule-based Models.

The only impact of rule-based models found with our search strategy was
on system accuracy, which can suffer from limited adaptability to complex

36

and dynamic data patterns when scenarios lie outside the predefined rules
[197], [198], [199].

4.8.12. AT12: Automated Hyperparameter Tuning.

When automated hyperparameter tuning (HPT) is aimed at increasing
system accuracy, the trade-off with performance efficiency occurs most often
[200], [201]. Liu et al. [202] claimed: “The current resource provisioning
approaches for HPT are unable to adjust resources adaptively according to
the upward trends of HPT accuracy at runtime. On the other hand, dynamic
resource provisioning approaches based on checkpointing are inefficient for
HPT, because of the high overhead of context switching and job restarting”.
HPT can enhance reliability by optimizing model generalization, reducing
the risk of overfitting [203], [204]. The positive impact of HPT is also noted
in terms of security [205], [206] by improving resistance against adversarial
attacks. Feroz et al. [207] claimed that HPT can improve not only system
accuracy and system reliability but also the adaptability and portability of
the system in different real-life scenarios. Finally, HPT can be used in the
form of optimizing model parameters to reduce bias and consider different
demographic groups or sensitive attributes [208], [209].

4.3.13. AT13: Automated Algorithm Selection.

Automated algorithm selection like HPT often brings a trade-off between
resource efficiency and system accuracy [210], [211]. The main possible ben-
efit of the automated algorithm selection component lies in the recommen-
dation of a promising learning algorithm based on meta features computed
from a given dataset [212]. Such analysis can be too complicated and time-
consuming for human data scientists and delegation of those responsibilities
to ML is considered a valuable contribution to system maintainability. Also,
it in some sense minimizes human factors in algorithm selection, which has a
positive effect on reliability as well. However, existing automated algorithm
selection methods for increasing accuracy rarely consider explainability as a
factor for selection, which leads to the complexity of automatically chosen
algorithms [213].

4.8.14. AT1/: Automated Bias Mitigation.

Hutiri et al. [214] found the risks of computational overhead due to the
complexity of bias detection and correction algorithms in the context of IoT
systems. The impact of this tactic on reliability is ambivalent. On the one

37

hand, such methods improve system stability when working with diverse
datasets, however, they can also lead to potential unintended model changes
with risks of system failures [215], [216]. Increased adaptability of the ML-
enabled system also influences the common attribute of portability [217]. The
potential distortion or removal of relevant patterns in the data introduced
by this tactic harms system accuracy [214], [218]. This fact also affects the
attribute of data quality [219].

4.8.15. AT15: Automated Data Preprocessing.

This tactic has a controversial impact on resource efficiency. According
to Ramirez et al. [220]: on the one hand, the introduction of automated data
preprocessing contributes to a faster and more precise learning process which
can potentially save resources, on the other hand, when it comes to big data
systems such tactic can lead to resource overload due to the large volumes
of data being processed. Rendleman et al. [221] proposed a method to in-
crease the usability of a certain module when data preprocessing is conducted
according to the priorities of end users. Automated preprocessing offers cer-
tain benefits in terms of model training, such as lowering the manual effort
required for data preparation and enhancing maintainability by structuring
and formatting data [222], while it can also protect models against malicious
inputs and data poisoning [223], [224]. It also improves explainability by en-
suring consistent and standardized data transformation, which makes model
behavior and decision insights clearer to humans [225], [226]. The impact of
this tactic on system accuracy is ambivalent since it can be either improved
by standardizing input data and noise cleaning or harmed by potentially in-
troduced biases or distortions by the algorithms [227], [228]. The complexity
of automated data preprocessing in the context of human-centered learning
can also have different implications for fairness due to the same reasons [227].

4.8.16. AT16: Automated Data Profiling.

With our search strategy we were unable to find any evidence that au-
tomated data profiling has any crucial impact on resource efficiency as we
expected. However, the personalization of certain data (which is a subset
of data profiling) can significantly increase usability according to the needs
of certain users [229], [230]. Data quality improvements provided by auto-
mated data profiling modules play a crucial role in overall system reliability
[231]. In the context of IoT, data profiling can detect data vulnerabilities
and privacy risks as an improvement of system security and upgrade feature

38

understanding as an improvement of system accuracy [232]. Finally, the im-
pact of data profiling on maintainability is controversial since it can reduce
manual effort on data management, but brings the risk of over-reliance on
automated processes, which can be “black boxes” if they are executed by
complex ML-algorithms [233], [234].

4.3.17. Verification of the trade-off matriz.

The resulting table of quality trade-offs was constantly being peer-reviewed
by co-authors of this paper based on their independent expertise. This paper
presents a version of the table agreed upon by all authors of the article.

All identified trade-offs are supported with literature references, however,
more expert validation is desirable. Due to the large number of identified
impacts, it would be complex and lead to significant effort. We present a
strategy for such assessment in Section 5.

5. Discussion

5.1. Observations regarding quality attributes.

This study proposed a common quality model for ML-enabled systems.
This model took a broader look at ML-enabled specific nature and suggested
considering attributes related to “data quality” and ML-unique “explain-
ability”, “system accuracy” and “fairness” along with a standard set of at-
tributes.

The attribute of system accuracy is a complex indicator that goes beyond
model accuracy itself. In the context of quality, it is used to understand
whether the system can operate effectively in the existing context with the
existing accuracy (incl. metrics of precision, recall, F-score, etc.).

Thirteen papers referred to data quality as an attribute of the overall
system quality. This attribute characterizes the quality of data sets used for
model training and testing, as well as the ways this data was obtained and the
sources from which this data was collected from at the system level. Working
with unreliable or incomplete data causes a high risk of system failure due
to its incorrect or insufficient perception of contextual reality as well as legal
issues.

Quality attributes rarely addressed in the reviewed literature may still
deserve further study. For any attribute named at least one time in RQ1, we
can assume that it is relevant for some specific ML-enabled system(s). For

39

example, the retrainability attribute can be very important for systems op-
erating in especially dynamically updated environments, and the autonomy
attribute could be relevant for systems that, for a number of reasons, need
to be isolated from all external influences.

Remarkably, the standard quality attribute of compatibility is empha-
sized in the literature as relevant to the quality of ML-enabled systems only
two times. For this reason, this quality attribute was not included in the
proposed model. According to studied papers, we noticed that the consid-
ered works typically sought to study characteristics connected to external
entities: resource efficiency as a result of interaction with available resources,
usability as the result of interaction with end-users, maintainability - with
developers and maintainers, system accuracy - with context, fairness - with
society, portability - with new environments, etc. However, the interaction
of ML-enabled systems with other software systems (which is the basis for
compatibility) remains poorly described in the scientific literature and likely
requires additional attention.

5.2. Comparison to ISO standards.

In 2023, the International Organization for Standardization (ISO) issued
a new standard ISO 25059:2023 [5]. This standard offers a quality model
for Al systems, which can be seen as a possible alternative answer to RQ1.
A comparison of our quality model with ISO 25059:2023, as well as with
the traditional SQuaRE quality model (ISO 25010:2011 [3]), is presented in
Table 4. The table maps all high-level attributes from three quality models
grouped by semantic similarity. We now compare our obtained quality model
to those from two relevant ISO standards. Importantly, our goal is not to
present a new, competing standard, but to reflect the results of our literature
review in comparison to existing quality models, in particular, those from the
standards.

Factually, neither of the previous standards considers system accuracy
and data quality on the system level, whereas we found in RQ1 that the
literature frequently mentions them as system-level concerns and in RQ2
identified appropriate architectural tactics to address them. Moreover, ISO
25059:2023 considers the ethical perspective (related to fairness in the termi-
nology of our research) as a high-level quality attribute and combines trans-
parency with explainability. In our model, we decided to separate explain-
ability and transparency. While system transparency refers to the openness
and accessibility of a system’s internal processes (which is mostly important

40

for developers and maintainers), system explainability focuses on how clearly
the system’s decisions and processes can be understood and interpreted by
humans (which is more important for users, operators, and experts). The re-
lease of ISO 25059:2023 confirmed the relevance of RQ1 and highlighted the

need to consider ML-specifics in assessing the quality of software systems.

Table 4: Comparison of proposed quality model and ISO standards

Proposed Quality Model

ISO 25059: AI systems

ISO 25010: general software

Functional Suitability

Functional Correctness

Functional Suitability

Resource Efficiency

Performance Efficiency

Usability User Controlability Usability
Reliability Robustness Reliability
Security - Security
Maintainability Intervenability Maintainability
Portability Functional Adaptability Portability
Explainability Transparency -

System Accuracy - -

Fairness Ethical -

Data Quality -

Compatibility

5.8. Observations regarding trade-offs.

The analysis of trade-offs proposes a comprehensive mapping of different
impacts after the implementation of certain ATs reported by different re-
searchers. The most frequently reported trade-offs appeared between system
accuracy and resource efficiency, system accuracy and explainability, fairness,
and resource efficiency. Also, notable positive “side-effects” include the facts
that: architectural enhancement of security can often increase data quality
and reliability, enhancing system accuracy positively affects reliability, and
tactics to improve data quality can have a positive impact on usability and
security.

We met a remarkable situation with AT3 of Federated Learning. While
investigating RQ2, we found its wide application to increase resource effi-
ciency and security. However, during the work on RQ3, we identified several
significant vulnerabilities in existing implementations of federated learning,
which motivated us to characterize its impact on security as controversial.

Context analysis is critical when applying architectural tactics of dis-
tributed learning in terms of security, automated data preprocessing in terms

41

of accuracy and fairness, and automated bias mitigation in terms of reliability
and data quality.

5.4. Threats to validity.

The main threat to external validity is that the generalizability of our
architectural findings can be limited as we restrict our analysis to avail-
able literature, specifically, scientific papers. While the analyzed literature
stems from diverse domains and methodologies, including those that analyze
practical experiences from companies, we cannot claim generalizability to all
possible systems and sub-domains. A planned mitigation is to conduct a grey
literature study investigating non-scientific literature such as blog entries and
repository documentation. Another threat to external validity is caused by
the complexity of the search process for RQ2. We searched for architectural
tactics with corresponding keywords, however, it is possible that some archi-
tectural tactics were not referred to as such in the literature. To mitigate
this we also included related terms (e.g., “design decisions”) in the search
query. However, we still cannot state that the list of found ATs is complete
and to mitigate this threat, we plan to conduct some more interview studies
with practitioners and experts. Finally, the mapping of quality trade-offs for
RQ3 was complex and should take sufficient resources for its validation from
the side of practitioners. The possible mitigation is to follow the proposed
verification strategy described further.

The main threat to internal validity associated with our approach to
consider all quality attributes of equal importance as well as architectural
tactics of equal value. Therefore, we do not weigh the magnitude of the
trade-offs between quality attributes and the scale of the consequences of AT
implementation. It can be mitigated by in-depth research of each AT with
the study of the specific contexts, leaving generalizability behind.

The main threat to construct validity is our focus on commonly reported
quality attributes in the literature, which we implicitly assume to be corre-
lated with their generalizability and the need to include these attributes in
a common quality model for the domain of ML-enabled software. Clearly,
some of the less commonly reported attributes might still be important in
particular domains and use cases. To mitigate this threat it is possible to
run a separate study of such attributes.

42

5.5. Implications for practitioners

Our study has several implications for practitioners and researchers. Con-
sidering practitioners, our findings can be used in a checklist-like manner
during the system requirements and design stages. During requirements elic-
itation, our quality model can guide practitioners in identifying relevant non-
functional requirements for the overall system that then need to be addressed
by the system architecture. The list of architectural tactics provides them
with insights into how to achieve those quality attributes architecturally. We
especially highlight our description of context and examples we provide for
each tactic, which allows practitioners to match the tactics to their partic-
ular context at hand. Finally, the table of trade-offs raises awareness of
possible unintended consequences of decisions made. These insights can be
especially valuable for start-ups and SMEs with limited resources for hiring
ML engineering experts.

Our findings are also informative for the emerging area of MLOps, which
focuses on the integration of DevOps principles and practices into the devel-
opment and maintenance of machine learning systems [235]. While a dedi-
cated literature study of quality attributes and tactics for MLOps is outside
our scope, we identify the following potential applications of our findings in
an MLOps context. First, the identified quality attributes can help align the
engineering process with business goals and operational needs and contribute
to more sustainable software development. For example, the consideration of
maintainability at the design stage can guide the optimization of planned re-
sources for further maintenance, support, and updates of the deployed system
[222]. Second, treating training and deployed systems as aspects of a single
complex software architecture along with appropriate tactics during the de-
sign phase, can improve operations associated with system retraining [25].
Finally, recognizing trade-offs can help allocate resources and prioritize tasks
within the common workflow [236]. For example, if a team uses containeriza-
tion to improve maintainability, our findings emphasize potential drawbacks
for security, which need to be addressed specifically within the roles and re-
sponsibilities of the DevOps setting, for example, by actively planning and
estimating the effort arising for a security team within the company [237].

5.0. Implications for researchers

We suggest several directions for future work within the existing archi-
tectural perspective. First, our list of trade-offs can be informative for re-
searchers to develop new architectural tactics. Given that our numbers of

43

identified tactics per quality attribute are between one and three, there is a
potential for new tactics that complement the existing ones to find a different
“sweet spot” within the trade-offs, possibly addressing specific domains and
application contexts. Second, more generally, while our study was broadly
focused on ML-based systems, it would be worthwhile to conduct additional
studies that explore the relevance and applicability of our findings in dif-
ferent domains (e.g., automotive vehicles, healthcare systems, etc.). Third,
our study of trade-offs is based on literature sources; yet, the results could
benefit from follow-up research that verifies and refines the resulting table of
trade-offs based on insights in industrial settings.

While we conducted a first evaluation of our results with experts, there
is room for further evaluating our findings in complementary ways, focusing
on their real-world applicability in specific contexts. As part of future work,
we propose to conduct such evaluations with empirical methods, such as
case studies, controlled experiments, and surveys. As a promising direction,
we highlight action research [238], which is dedicated to deploying solutions
in a specific real-world context—for example, in our case, specific quality
attributes and tactics in an industrial MLOps environment with multiple
teams. In such an environment, we aim to investigate if the introduction of
a quality model helps teams to allocate their priorities more efficiently, if the
identified architectural tactics can be applied to systems of different natures
and sizes and be generalizable to new contexts, and how identified trade-offs
affect the decisions made by MLOps teams. Such an evaluation may shit the
focus from our current architectural perspective to a more operational one,
which can be especially relevant in the context of MLOps.

6. Conclusion

This work contributes to the methodology of building software architec-
ture for ML-enabled systems from the perspective of quality, offering ways
to define it and achieve it through common architectural tactics with a con-
sideration of possible side effects. Our focus is on theory-building, as we
systematically identified and synthesized information from 206 research pa-
pers.

There are several worthwhile directions for future work. First, while
our contributions are informed and validated by empirical insights from pub-
lished literature, additional validation, for example, through expert feedback,
is possible. Second, the selection of literature for analysis can be expanded

44

by including gray literature. As a result, the quality model and proposed
architectural tactics can be refined. Third, one can conduct complementary
forms of evaluation highlighting the applicability of ouf findings in specific
real-world contexts, through action research and other empirical methods.
The emerging area of MLOps provides a particularly promising avenue for
such evaluations. Finally, we suggest follow-up research to further investi-
gate the role of quality aspects mentioned infrequently in the literature (e.g.,
portability) and to systematically study the impact of the identified tactics
on all quality aspects.

7. Data Availability

A supplementary artifact! is available on the Figshare platform, contain-
ing all details about our data sources, search strategy, and data extraction
strategy.

8. Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wal-
lenberg Foundation, and VR. We are grateful to the experts presented at
the Swedish Requirements Engineering Meeting (SiREN) 2023 and ML engi-
neers from the Swedish Al software company for providing expertise on our
findings.

References

[1] G. Hulten, Building Intelligent Systems: A Guide to Machine Learning
Engineering, Apress, 2018.

[2] R. Monson-Haefel, 97 things every software architect should know: col-
lective wisdom from the experts, O’Reilly Media, Inc., 2009.

[3] I. O. for Standardization, ISO/IEC 25010:2011, Systems and software
engineering — Systems and software Quality Requirements and Eval-
uation — System and software quality models, Tech. rep., ISO (2011).

[4] 1. O. for Standardization, ISO/TEC 42010:2011 - Systems and software
engineering — Architecture description, Tech. rep., ISO (2011).

!Supplementary Artifact: https://figshare.com/s/57b4fa3f53caecd4asbl

45

[5]

[15]
[16]

[17]

[18]

L. O. for Standardization, ISO/IEC 25059:2023 Software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE)
— Quality model for Al systems, Tech. rep., ISO (2023).

X. Wang, M. Miao, A framework for requirements specification of
machine-learning systems, in: SEKE, 2022, pp. 7-12.

M. U. Hassan, M. H. Rehmani, R. Kotagiri, J. Zhang, J. Chen, Dif-
ferential privacy for renewable energy resources based smart metering,
JPDC (2019).

L. Wanganoo, V. K. Shukla, Real-time data monitoring in cold supply
chain through NB-IoT, in: ICCCNT, 2020, pp. 1-6.

L. Bass, P. Clements, R. Kazman, Software architecture in practice,
Addison-Wesley, 2003.

I. O. for Standardization, ISO/TEC 9126:2001 Software engineering -
Product quality, Tech. rep., ISO (2001).
L. Lundberg, J. Bosch, D. Haggander, P.-O. Bengtsson, Quality at-

tributes in software architecture design, in: TASTED, 1999, pp. 353—
362.

A. Serban, J. Visser, Adapting software architectures to machine learn-
ing challenges, in: SANER, 2022, pp. 152-163.

P. Santhanam, Quality management of machine learning systems, in:
EDSMLS, 2020, pp. 1-13.

J. Siebert, L. Joeckel, J. Heidrich, A. Trendowicz, K. Nakamichi,
K. Ohashi, I. Namba, R. Yamamoto, M. Aoyama, Construction of a
quality model for machine learning systems, SQ (2022).

H. Kuwajima, H. Yasuoka, T. Nakae, Engineering problems in machine
learning systems, ML (2020).

B. Gezici, A. K. Tarhan, Systematic literature review on software qual-
ity for Al-based software, ESE 27 (3) (2022) 66.

X. Franch, S. Martinez-Fernandez, C. P. Ayala, C. Goémez, Architec-
tural decisions in Al-based systems: An ontological view, in: QUATIC,
2022, pp. 18-27.

M. Bhat, K. Shumaiev, U. Hohenstein, A. Biesdorf, F. Matthes, The
evolution of architectural decision making as a key focus area of soft-
ware architecture research: A semi-systematic literature study, in:

ICSA, 2020, pp. 69-80.

46

[19]

[22]
[23]
[24]

[25]

[31]

32]

H. Muccini, K. Vaidhyanathan, Software architecture for ML-based
systems: What exists and what lies ahead, in: WAIN, 2021, pp. 121-
128.

B. Kitchenham, S. Charters, Guidelines for performing systematic lit-
erature reviews in software engineering, Tech. rep., EBSE Technical
Report (2007).

K. M. Habibullah, G. Gay, J. Horkoff, Non-functional requirements for
machine learning: Understanding current use and challenges among
practitioners, RE (2023).

S. Vojit, T. Kliegr, Editable machine learning models? a rule-based
framework for user studies of explainability, ADAC (2020).

J. W. Drisko, T. Maschi, Content analysis, Oxford University Press,
USA, 2016,

S. K. Reed, A taxonomic analysis of abstraction, Perspectives on Psy-
chological Science 11 (6) (2016) 817-837.

S. Peldszus, H. Knopp, Y. Sens, T. Berger, Towards ML-integration
and training patterns for Al-enabled systems, in: International Con-
ference on Bridging the Gap between Al and Reality, Springer, 2023,
pp- 434-452.

A. Vogelsang, M. Borg, Requirements engineering for machine learning;:
Perspectives from data scientists, in: REW, 2019, pp. 245-251.

C. Kastner, E. Kang, Teaching software engineering for Al-enabled
systems, in: ICSE, 2020, pp. 45-48.

M. A. Agca, S. Faye, D. Khadraoui, A survey on trusted distributed
artificial intelligence, ECSA (2022).

H. Liu, S. Eksmo, J. Risberg, R. Hebig, Emerging and changing tasks
in the development process for machine learning systems, in: ICSSP,
2020, pp. 125-134.

P. Haindl, T. Hoch, J. Dominguez, J. Aperribai, N. K. Ure, M. Tuncel,
Quality characteristics of a software platform for human- Al teaming
in smart manufacturing, in: QUATIC, 2022, pp. 3-17.

F. Ishikawa, N. Yoshioka, How do engineers perceive difficulties in en-
gineering of machine-learning systems?-questionnaire survey, in: CESI,
2019, pp. 2-9.

A. Serban, K. van der Blom, H. Hoos, J. Visser, Adoption and effects

47

[38]
[39]

[40]

[42]

[43]

[44]

[45]

of software engineering best practices in machine learning, in: ESEM,
2020, pp. 1-12.

Z. Wan, X. Xia, D. Lo, G. C. Murphy, How does machine learning
change software development practices?, TSE (2019).

R. H. Yap, Towards certifying trustworthy machine learning systems,
in: TAILOR, 2021, pp. 77-82.

[. Ozkaya, What is really different in engineering Al-enabled systems?,
IEEE Softw. (2020).

J. M. Zhang, M. Harman, L. Ma, Y. Liu, Machine learning testing:
Survey, landscapes and horizons, TSE (2020).

H.-L. Truong, Coordination-aware assurance for end-to-end machine
learning systems: the R3E approach, in: Al Assurance, 2023, pp. 339-
367.

H. Kuwajima, F. Ishikawa, Adapting SQuaRE for quality assessment
of artificial intelligence systems, in: ISSREW, 2019, pp. 13-18.

J. Horkoff, Non-functional requirements for machine learning: Chal-
lenges and new directions, in: RE, 2019, pp. 386-391.

Q. Chen, Y. Gong, Y. Lu, J. Tang, Classifying and measuring the
service quality of Al chatbot in frontline service, Journal of Business
Research (2022).

A. Poth, B. Meyer, P. Schlicht, A. Riel, Quality assurance for machine
learning—an approach to function and system safeguarding, in: QRS,
2020, pp. 22-29.

H. Challa, N. Niu, R. Johnson, Faulty requirements made valuable: On
the role of data quality in deep learning, in: AIRE, 2020, pp. 61-69.

A. Chakraborty, R. Bagavathi, U. Tomer, A comprehensive decom-
position towards the facets of quality in IoT, in: ICOSEC, 2020, pp.
759-764.

A. Perera, A. Aleti, C. Tantithamthavorn, J. Jiarpakdee, B. Turhan,
L. Kuhn, K. Walker, Search-based fairness testing for regression-based
machine learning systems, ESE (2022).

K. Nakamichi, K. Ohashi, I. Namba, R. Yamamoto, M. Aoyama,
L. Joeckel, J. Siebert, J. Heidrich, Requirements-driven method to de-

termine quality characteristics and measurements for machine learning
software and its evaluation, in: RE, 2020, pp. 260-270.

48

[46]

[47]
[48]

[49]

[50]

[51]

[54]

[55]

[56]

[57]

[58]

L. E. Lwakatare, A. Raj, I. Crnkovic, J. Bosch, H. H. Olsson, Large-
scale machine learning systems in real-world industrial settings: A re-
view of challenges and solutions, Inf. Softw. Technol . (2020).

A. L. Smith, R. Clifford, Quality characteristics of artificially intelligent
systems, in: IWESQ APSEC, 2020, pp. 1-6.

H. Yokoyama, Machine learning system architectural pattern for im-
proving operational stability, in: ICSA, 2019, pp. 267-274.

H. Barzamini, M. Shahzad, H. Alhoori, M. Rahimi, A multi-level se-
mantic web for hard-to-specify domain concept, pedestrian, in ML-
based software, RE (2022).

S. Khan, S. Tsutsumi, T. Yairi, S. Nakasuka, Robustness of Al-
based prognostic and systems health management, Annu. Rev. Control.
(2021).

N. Balasubramaniam, M. Kauppinen, K. Hiekkanen, S. Kujala, Trans-

parency and explainability of Al systems: ethical guidelines in practice,
in: REFSQ, 2022, pp. 3-18.

L. M. Cysneiros, J. C. S. do Prado Leite, Non-functional requirements
orienting the development of socially responsible software, in: CAiSE,
2020, pp. 335-342.

H. Washizaki, H. Uchida, F. Khomh, Y.-G. Guéhéneuc, Studying soft-
ware engineering patterns for designing machine learning systems, in:
IWESEP, 2019, pp. 49-495.

K. Ahmad, M. Abdelrazek, C. Arora, M. Bano, J. Grundy, Require-
ments practices and gaps when engineering human-centered artificial
intelligence systems, ASOC (2023).

M. Felderer, R. Ramler, Quality assurance for Al-based systems:
Overview and challenges (introduction to interactive session), in:
SWQD, 2021, pp. 33-42.
M. Felderer, B. Russo, F. Auer, On testing data-intensive software
systems, C-CPS (2019).
D. G. Arseniev, D. E. Baskakov, J. Kasurinen, V. P. Shkodyrev,

A. Mergasov, Software engineering principles apply to artificial intelli-
gence systems, in: CPS&C, 2021, pp. 151-158.

M. M. Morovati, A. Nikanjam, F. Khomh, Z. M. Jiang, Bugs in machine
learning-based systems: a faultload benchmark, ESE (2023).

49

[59]

[60]

[63]

[64]

[65]

C. Tao, J. Gao, T. Wang, Testing and quality validation for Al
software—perspectives, issues, and practices, JSS (2019).

H.-M. Heyn, E. Knauss, P. Pelliccione, A compositional approach to
creating architecture frameworks with an application to distributed Al
systems, JSS (2023).

J. Dodge, Q. V. Liao, Y. Zhang, R. K. Bellamy, C. Dugan, Explain-
ing models: an empirical study of how explanations impact fairness
judgment, in: TUI, 2019, pp. 275-285.

G. Amaral, R. Guizzardi, G. Guizzardi, J. Mylopoulos, Ontology-based
modeling and analysis of trustworthiness requirements: Preliminary
results, in: ER, 2020, pp. 342-352.

S. Picard, C. Chapdelaine, C. Cappi, L. Gardes, E. Jenn, B. Lefevre,
T. Soumarmon, Ensuring dataset quality for machine learning certifi-
cation, in: ISSREW, 2020, pp. 275-282.

S. V. Garbuk, Intellimetry as a way to ensure Al trustworthiness, in:
IC-ATAI 2018, pp. 27-30.

F. Boenisch, V. Battis, N. Buchmann, M. Poikela, “i never thought
about securing my machine learning systems”: A study of security and
privacy awareness of machine learning practitioners, in: MuC, 2021,
pp- 520-546.

S. Shi, Q. Wang, X. Chu, B. Li, Y. Qin, R. Liu, X. Zhao,
Communication-efficient distributed deep learning with merged gra-
dient sparsification on gpus, in: INFOCOM, IEEE, 2020, pp. 406-415.
J. Rao, X. Bu, K. Wang, C.-Z. Xu, Self-adaptive provisioning of vir-
tualized resources in cloud computing, in: SIGMETRICS, 2011, pp.
129-130.

B. Zhao, M. Song, S. Liu, L. Sun, W. Jiang, H. Qian, X.-Y. Zhang,
Y. Zhang, T. Jiang, Mosaicnet: A deep-learning-based multi-tile
biomedical image stitching method, in: EMBC, IEEE, 2023, pp. 1-
4.

S. Noureen, M. Zubair, M. Ali, M. Q. Mehmood, Deep learning based
sequence modeling for optical response retrieval of photonic nanostruc-
tures, in: IBCAST, IEEE, 2021, pp. 289-292.

G. Drainakis, P. Pantazopoulos, K. V. Katsaros, V. Sourlas, A. Amdi-
tis, D. I. Kaklamani, From centralized to federated learning: Explor-

50

[30]

[81]

[82]

ing performance and end-to-end resource consumption, Computer Net-
works 225 (2023) 109657.

T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, W. Shi,
Federated learning of predictive models from federated electronic health
records, International journal of medical informatics 112 (2018) 59-67.

A. P. Singh, S. Chaudhari, Embedded machine learning-based data re-
duction in application-specific constrained IoT networks, in: SIGAPP,
2020, pp. 747-753.

M. H. ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah,
S. U. Khan, Big data reduction methods: a survey, Data Science and
Engineering 1 (2016) 265-284.

A. M. Hussein, A. K. Idrees, R. Couturier, Distributed energy-efficient
data reduction approach based on prediction and compression to reduce

data transmission in IoT networks, International Journal of Commu-
nication Systems 35 (15) (2022) e5282.

D. Petrelli, A.-S. Dadzie, V. Lanfranchi, Mediating between AI and
highly specialized users, AI Magazine 30 (4) (2012) 95-95.

M. Winter, P. Jackson, S. Fallahkhair, Gesture Me: A machine learning
tool for designers to train gesture classifiers, in: CHIRA, Springer,
2023, pp. 336-352.

M. Kroll, K. Burova-Kefler, AI and learning in the context of digital
transformation, in: AHFE, Springer, 2021, pp. 36-43.

F. Heimerl, S. Koch, H. Bosch, T. Ertl, Visual classifier training for
text document retrieval, TVCG 18 (12) (2012) 2839-2848.

F. Sperrle, M. El-Assady, G. Guo, R. Borgo, D. H. Chau, A. Endert,
D. Keim, A survey of human-centered evaluations in human-centered
machine learning, in: Computer Graphics Forum, Vol. 40, Wiley Online
Library, 2021, pp. 543-568.

0. Gémez-Carmona, D. Casado-Mansilla, D. Lépez-de Ipina, J. Garcia-
Zubia, Human-in-the-loop machine learning: Reconceptualizing the
role of the user in interactive approaches, Internet of Things 25 (2024)
101048.

G. A. Lewis, I. Ozkaya, X. Xu, Software architecture challenges for ML
systems, in: ICSME, IEEE, 2021, pp. 634-638.

T. Van Der Weide, D. Papadopoulos, O. Smirnov, M. Zielinski,

51

[87]

3]

[89]

[90]

[91]
[92]

[93]

[94]

[95]

T. Van Kasteren, Versioning for end-to-end machine learning pipelines,
in: DM-ML, 2017, pp. 1-9.

S. J. Warnett, U. Zdun, Architectural design decisions for machine
learning deployment, in: ICSA, IEEE, 2022, pp. 90-100.

P. T. Rajendran, H. Espinoza, A. Delaborde, C. Mraidha, Human-in-
the-loop learning methods toward safe DL-based autonomous systems:
A review, in: SAFECOMP, Springer, 2021, pp. 251-264.

P. Sanju, Enhancing intrusion detection in IoT systems: A hybrid
metaheuristics-deep learning approach with ensemble of recurrent neu-
ral networks, JER 11 (4) (2023) 356-361.

Q. Liu, L. Chen, H. Jiang, J. Wu, T. Wang, T. Peng, G. Wang, A
collaborative deep learning microservice for backdoor defenses in in-
dustrial IoT networks, Ad Hoc Networks 124 (2022) 102727.

F. Qu, J. Zhang, Z. Shao, S. Qi, An intrusion detection model based
on deep belief network, in: ICNCC, 2017, pp. 97-101.

S. Laqtib, K. E. Yassini, M. L. Hasnaoui, A deep learning methods
for intrusion detection systems based machine learning in MANET in:
SCA, 2019, pp. 1-8.

S. M. M. Rashid, M. Toufikuzzaman, M. S. Hossain, A deep learning
based semi-supervised network intrusion detection system robust to
adversarial attacks, in: NSysS, 2023, pp. 25-34.

H. El Balbali, A. Abou El Kalam, Al-driven big data quality im-
provement for efficient threat detection in agricultural IoT systems,
in: AI2SD, Springer, 2023, pp. 39-47.

G. McGraw, Security engineering for machine learning (keynote), in:
SIGSOFT, 2020, pp. 2-2.

W. Bekri, R. Jmal, L. C. Fourati, Secure and trustworthiness IoT sys-
tems: investigations and literature review, TS (2024) 1-36.

Y.-H. Wu, X.-H. Huang, J.-X. Liu, L. Chang, A big data encryption
method based on lorenz and feistel structures, in: ICCEAI IEEE, 2022,
pp. 1-5.

M. Kantarcioglu, F. Shaon, Securing big data in the age of Al, in:
TPS-ISA, IEEE, 2019, pp. 218-220.

Y. Aono, T. Hayashi, L. Wang, S. Moriai, et al., Privacy-preserving

deep learning via additively homomorphic encryption, TIFS 13 (5)
(2017) 1333-1345.

52

[96]

[99]

[100]

[101]

[102]

103]

104]

105

[106]
[107]

[108]

109]

M. Kim, O. Giinlii, R. F. Schaefer, Federated learning with local differ-
ential privacy: Trade-offs between privacy, utility, and communication,
in: ICASSP, IEEE, 2021, pp. 2650-2654.

J. Zhou, Z. Su, J. Ni, Y. Wang, Y. Pan, R. Xing, Personalized privacy-
preserving federated learning: Optimized trade-off between utility and
privacy, in: GLOBECOM, IEEE, 2022, pp. 4872-4877.

H. Kaur, V. Rani, M. Kumar, M. Sachdeva, A. Mittal, K. Kumar,
Federated learning: a comprehensive review of recent advances and
applications, Multimedia Tools and Applications (2023) 1-24.

C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, Y. Gao, A survey on federated
learning, KBS 216 (2021) 106775.

M. M. Rovnyagin, A. S. Hrapov, A. V. Guminskaia, A. P. Orlov, ML-
based heterogeneous container orchestration architecture, in: EICon-
Rus, IEEE, 2020, pp. 477-481.

A. B. Kolltveit, J. Li, Operationalizing machine learning models: A
systematic literature review, in: SE4RAI, 2022, pp. 1-8.

M. Openja, F. Majidi, F. Khomh, B. Chembakottu, H. Li, Studying the
practices of deploying machine learning projects on docker, in: EASE,
2022, pp. 190-200.

J. Gonzalez-Abad, A. Lépez Garcia, V. Y. Kozlov, A container-based
workflow for distributed training of deep learning algorithms in HPC
clusters, Cl. Comp. 26 (5) (2023) 2815-2834.

H. B. Braiek, F. Khomh, On testing machine learning programs, JSS
164 (2020) 110542.

S. Singaravel, J. Suykens, P. Geyer, Deep-learning neural-network ar-
chitectures and methods: Using component-based models in building-
design energy prediction, Adv. Eng. Inform. (2018).

J. Wonsil, J. Sullivan, M. Seltzer, A. Pocock, Integrated reproducibility
with self-describing machine learning models, in: CRR, 2023, pp. 1-14.

N. Shadab, A. Salado, Towards an interface description template for
reusing Al-enabled systems, in: SMC, IEEE, 2020, pp. 2893-2900.

P. Geyer, S. Singaravel, Component-based machine learning for perfor-
mance prediction in building design, Applied energy 228 (2018) 1439—
1453.

N. Naydenov, S. Ruseva, Combining container orchestration and ma-

53

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

119]

[120]

[121]

chine learning in the cloud: A systematic mapping study, in: IN-
FOTEH, IEEE, 2022, pp. 1-6.

S. Joshi, B. Hasan, R. Brindha, Optimal declarative orchestration of
full lifecycle of machine learning models for cloud native, in: ICAAIC,
IEEE, 2024, pp. 578-582.

V. U. Gongane, M. V. Munot, A. D. Anuse, A survey of explainable Al
techniques for detection of fake news and hate speech on social media
platforms, JCS (2024) 1-37.

D. Minh, H. X. Wang, Y. F. Li, T. N. Nguyen, Explainable artifi-
cial intelligence: a comprehensive review, Artificial Intelligence Review
(2022) 1-66.

J. Maan, Deep learning-driven explainable Al using generative adver-
sarial network (GAN), in: INDICON, IEEE, 2022, pp. 1-5.

K. Hohlein, M. Kern, T. Hewson, R. Westermann, A comparative study

of convolutional neural network models for wind field downscaling, Me-
teorological Applications 27 (6) (2020) e1961.

D. Gaspar, P. Silva, C. Silva, Explainable AI for intrusion detec-
tion systems: Lime and shap applicability on multi-layer perceptron,
ICE/ITMC (2024).

H. Saadatfar, Z. Kiani-Zadegan, B. Ghahremani-Nezhad, US-LIME:
Increasing fidelity in LIME using uncertainty sampling on tabular data,
Neurocomputing 597 (2024) 127969.

N. Burkart, M. F. Huber, A survey on the explainability of supervised
machine learning, JAIR 70 (2021) 245-317.

P. E. Love, W. Fang, J. Matthews, S. Porter, H. Luo, L. Ding, Explain-
able artificial intelligence (XAI): Precepts, models, and opportunities
for research in construction, AEI 57 (2023) 102024.

R. Moraffah, M. Karami, R. Guo, A. Raglin, H. Liu, Causal inter-
pretability for machine learning-problems, methods and evaluation,
SIGKDD 22 (1) (2020) 18-33.

C. P. Vieira, L. A. Digiampietri, Machine learning post-hoc inter-
pretability: a systematic mapping study, in: SBSI, ACM, 2022, pp.
1-8.

E. Soares, P. P. Angelov, B. Costa, M. P. G. Castro, S. Nageshrao,
D. Filev, Explaining deep learning models through rule-based approx-
imation and visualization, TFS (2020).

o4

[122]

123]

[124]

[125]

126]

[127)

128]

[129]
[130]
[131]

[132]

[133]

D. Rajapaksha, C. Bergmeir, W. Buntine, LoORMIkA: Local rule-based
model interpretability with k-optimal associations, Information Sci-
ences 540 (2020) 221-241.

Y. Rimal, N. Sharma, A. Alsadoon, The accuracy of machine learning
models relies on hyperparameter tuning: student result classification
using random forest, randomized search, grid search, bayesian, genetic,
and optuna algorithms, Multimedia Tools and Applications (2024) 1-
16.

M. Daviran, A. Maghsoudi, R. Ghezelbash, B. Pradhan, A new strat-
egy for spatial predictive mapping of mineral prospectivity: Automated

hyperparameter tuning of random forest approach, Computers & Geo-
sciences 148 (2021) 104688.

A. L. C. Ottoni, A. M. Souza, M. S. Novo, Automated hyperparam-
eter tuning for crack lee2021landscapeimage classification with deep
learning, Soft Computing 27 (23) (2023) 18383-18402.

P. Kerschke, H. H. Hoos, F. Neumann, H. Trautmann, Automated al-
gorithm selection: Survey and perspectives, Evolutionary computation
27 (1) (2019) 3-45.

N. Pise, P. Kulkarni, Algorithm selection for classification problems,
in: SAI, IEEE, 2016, pp. 203-211.

H. H. Rashidi, N. Tran, S. Albahra, L. T. Dang, Machine learning in
health care and laboratory medicine: General overview of supervised
learning and Auto-ML, International Journal of Laboratory Hematol-
ogy 43 (2021) 15-22.

F. Deeba, S. R. Patil, Utilization of machine learning algorithms for
prediction of diseases, in: i-PACT, IEEE, 2021, pp. 1-7.

M. Alissa, K. Sim, E. Hart, A feature-free approach to automated
algorithm selection, in: GECCO, Wiley, 2023, pp. 9-10.

M. S. A. Lee, J. Singh, The landscape and gaps in open source fairness
toolkits, in: CHI, 2021, pp. 1-13.

C. Ferrara, G. Sellitto, F. Ferrucci, F. Palomba, A. De Lucia, Fairness-
aware machine learning engineering: how far are we?, ESE 29 (1) (2024)
9.

A. Agarwal, H. Agarwal, A seven-layer model with checklists for stan-

dardising fairness assessment throughout the Al lifecycle, Al and Ethics
(2023) 1-16.

95

[134]

[135]

[136]

[137]

[138)]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

A. Castelnovo, R. Crupi, G. Greco, D. Regoli, I. G. Penco, A. C. Cosen-
tini, A clarification of the nuances in the fairness metrics landscape,
Scientific Reports 12 (1) (2022) 4209.

J. Zhang, Y. Shu, H. Yu, Fairness in design: A framework for facilitat-
ing ethical artificial intelligence designs, IJCS 7 (1) (2023) 32-39.

S. Siddiqi, R. Kern, M. Boehm, Saga: A scalable framework for opti-
mizing data cleaning pipelines for machine learning applications, MoD
1 (3) (2023) 1-26.

G. Canbek, S. Sagiroglu, T. T. Temizel, New techniques in profiling big

datasets for machine learning with a concise review of android mobile
malware datasets, in: IBIGDELFT, 2018, pp. 117-121.

F. Mostafa, L. Tao, W. Yu, An effective architecture of digital twin
system to support human decision making and Al-driven autonomy;,
CCPE 33 (19) (2021) e6111.

. Logothetis, S. Barnett, L. Hoon, S. Thudumu, J. Mathew, C. Luck-
hoff, G. O’Reilly, D. Collard, R. Vasa, K. Mouzakis, et al., Pims: A
pre-ML labelling tool, in: e-Science, IEEE, 2022, pp. 431-432.

R. R. Pansara, B. Y. Kasula, A. B. Bhatia, P. Whig, Enhancing sustain-
able development through machine learning-driven master data man-
agement, in: International Conference on Sustainable Development
through Machine Learning, Al and IoT, Springer, 2024, pp. 332-341.

R. Gawhade, L. R. Bohara, J. Mathew, P. Bari, Computerized data-
preprocessing to improve data quality, in: ICPC2T, 2022, pp. 1-6.

M. Ramkumar, K. Malathi, K. Pavithra, Optimizing machine learning
model accuracy via OBNT algorithm: Advanced data preprocessing
technique, in: ICSES, IEEE, 2023, pp. 1-6.

L. Santos, L. Ferreira, Atlantic—automated data preprocessing frame-
work for supervised machine learning, Software Impacts 17 (2023)
100532.

M. Bilal, G. Ali, M. W. Igbal, M. Anwar, M. S. A. Malik, R. A. Kadir,
Auto-prep: efficient and automated data preprocessing pipeline, IEEE
Access 10 (2022) 107764-107784.

O. Nassef, W. Sun, H. Purmehdi, M. Tatipamula, T. Mahmoodi, A
survey: Distributed machine learning for 5G and beyond, Computer
Networks 207 (2022) 108820.

56

[146]

[147]

[148]

[149]

[150]

[151]
[152]

[153]

[154]

155

[156]

[157]

H.-P. Cheng, P. Yu, H. Hu, S. Zawad, F. Yan, S. Li, H. Li, Y. Chen, To-
wards decentralized deep learning with differential privacy, in: ICCC,
Springer, 2019, pp. 130-145.

F. Zerka, V. Urovi, F. Bottari, R. T. Leijenaar, S. Walsh, H. Gabrani-
Juma, M. Gueuning, A. Vaidyanathan, W. Vos, M. Occhipinti, et al.,
Privacy preserving distributed learning classifiers—sequential learning
with small sets of data, Computers in Biology and Medicine 136 (2021)
104716.

B. Guijarro-Berdinas, S. Fernandez-Lorenzo, N. Sanchez-Marono,
O. Fontenla-Romero, A privacy-preserving distributed and incremental
learning method for intrusion detection, in: ICANN, Springer, 2011,
pp. 415-421.

N. Mandela, I. Alam, A. Amudha, D. Priyanka, D. K. Singh, et al.,
Enabling scalable applications with intelligent distributed data pro-
cessing, in: INCOFT, IEEE, 2023, pp. 1-7.

A. Tuladhar, D. Rajashekar, N. D. Forkert, Distributed learning in
healthcare, Trends of Artificial Intelligence and Big Data for E-Health
(2023) 183-212.

D. Fan, Y. Wu, X. Li, On the fairness of swarm learning in skin lesion
classification, in: MICCALI, Springer, 2021, pp. 120-129.

T. Lane, C. E. Brodley, Temporal sequence learning and data reduction
for anomaly detection, TISSEC 2 (3) (2019) 295-331.

M. Tomei, A. Schwing, S. Narayanasamy, R. Kumar, Sensor training
data reduction for autonomous vehicles, in: MOBICOM, 2019, pp. 45—
50.

M. Z. A. Bhuiyan, T. Wang, A. Zaman, G. Wang, Data reduction
through decision-making based on event-sensitivity in IoT-enabled
event monitoring, in: HPCC, IEEE, 2019, pp. 2039-2044.

S. Shen, T. Zhu, D. Wu, W. Wang, W. Zhou, From distributed machine
learning to federated learning: In the view of data privacy and security,

CCPE 34 (16) (2022) €6002.

H. Jeong, T.-M. Chung, Security and privacy issues and solutions in
federated learning for digital healthcare, in: FDSE, Springer, 2022, pp.
316-331.

G. K. Jagarlamudi, A. Yazdinejad, R. M. Parizi, S. Pouriyeh, Exploring

o7

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

167]

[168]

privacy measurement in federated learning, The Journal of Supercom-
puting (2023) 1-41.

S. Shin, M. Boyapati, K. Suo, K. Kang, J. Son, An empirical analy-
sis of image augmentation against model inversion attack in federated
learning, Cluster Computing 26 (1) (2023) 349-366.

L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, S. Y. Philip,
Privacy and robustness in federated learning: Attacks and defenses,
IEEE transactions on neural networks and learning systems (2022).

M. Kirienko, M. Sollini, G. Ninatti, D. Loiacono, E. Giacomello,
N. Gozzi, F. Amigoni, L. Mainardi, P. L. Lanzi, A. Chiti, Distributed
learning: a reliable privacy-preserving strategy to change multicenter
collaborations using Al, EJNMMI 48 (2021) 3791-3804.

F. Sattler, K.-R. Miiller, T. Wiegand, W. Samek, On the byzantine
robustness of clustered federated learning, in: ICASSP, IEEE, 2020,
pp. 8861-8865.

H. Lycklama, L. Burkhalter, A. Viand, N. Kiichler, A. Hithnawi, RoFL:
Robustness of secure federated learning, in: SP, IEEE, 2023, pp. 453—
476.

X. Gu, Z. Tianqing, J. Li, T. Zhang, W. Ren, K.-K. R. Choo, Privacy,
accuracy, and model fairness trade-offs in federated learning, Comput-
ers & Security 122 (2022) 102907.

T. N. Nguyen, R. Choo, Human-in-the-loop XAl-enabled vulnerability
detection, investigation, and mitigation, in: ASE, IEEE, 2021, pp.
1210-1212.

M. L. Jones, E. Kaufman, E. Edenberg, Al and the ethics of automating
consent, SP 16 (3) (2018) 64-72.

S. Jena, S. Sundarrajan, A. Meena, B. Chandavarkar, Human-in-the-
loop control and security for intelligent cyber-physical systems (CPSs)
and [oT, in: ICDSIAI, Springer, 2022, pp. 393-403.

D. Xin, L. Ma, J. Liu, S. Macke, S. Song, A. Parameswaran, Accelerat-
ing human-in-the-loop machine learning: Challenges and opportunities,
in: DEEM, 2018, pp. 1-4.

Y. Kang, Y.-W. Chiu, M.-Y. Lin, F.-Y. Su, S.-T. Huang, To-

wards model-informed precision dosing with expert-in-the-loop ma-
chine learning, in: IRI, IEEE, 2021, pp. 342-347.

58

[169]

[170]

171]

[172]

[173]

[174]

[175]

[176]

[177]

178]

[179]

[180]

[181]

D. M. Rodriguez, M. P. Cuéllar, D. P. Morales, Concept logic trees: en-
abling user interaction for transparent image classification and human-
in-the-loop learning, AI (2024) 1-13.

N. Zhang, R. Bahsoon, N. Tziritas, G. Theodoropoulos, Explainable
human-in-the-loop dynamic data-driven digital twins, in: DDDAS,
Springer, 2022, pp. 233-243.

J. Liu, Human-in-the-loop ethical AI for care robots and confucian
virtue ethics, in: ICSR, Springer, 2022, pp. 674-688.

S. Kalananthan, A. Kichutkin, Z. Shang, A. Strausz, F. J. S. Bautiste,
M. El-Assady, Mindset: A bias-detection interface using a visual
human-in-the-loop workflow, in: ECAI, Springer, 2023, pp. 93-105.
B. Ghai, K. Mueller, D-bias: A causality-based human-in-the-loop sys-
tem for tackling algorithmic bias, TVCG 29 (1) (2022) 473-482.

M. Priestley, F. O’donnell, E. Simperl, A survey of data quality require-
ments that matter in ML development pipelines, JDIQ 15 (2) (2023)
1-39.

J. Jakubik, M. Vossing, N. Kiihl, J. Walk, G. Satzger, Data-centric
artificial intelligence, BISE (2024) 1-9.

M. H. N. Yousefi, V. Degeler, A. Lazovik, Empowering machine learn-
ing development with service-oriented computing principles, in: Sum-
merSOC, Springer, 2023, pp. 24-44.

S. Tsimenidis, T. Lagkas, K. Rantos, Deep learning in IoT intrusion
detection, Journal of network and systems management 30 (1) (2022)
8.

R. Devendiran, A. V. Turukmane, Dugat-LSTM: Deep learning based
network intrusion detection system using chaotic optimization strategy,
Expert Systems with Applications 245 (2024) 123027.

B. Lampe, W. Meng, A survey of deep learning-based intrusion detec-
tion in automotive applications, Expert Systems with Applications 221
(2023) 119771.

M. Pawlicki, A. Pawlicka, M. Srutek, R. Kozik, M. Chora$, Interpret-
ing intrusions-the role of explainability in Al-based intrusion detection
systems, in: CORES, Springer, 2023, pp. 45-53.

C. Shand, R. Fong, U. Butt, How explainable artificial intelligence
(XAI) models can be used within intrusion detection systems (IDS) to

59

[182]

[183]

[184]

[185]

[186]

[187]

188

[189)]

[190]

191]

[192]

193]

enhance an analyst’s trust and understanding, in: ICGS3, Springer,
2023, pp. 321-342.

S. Aljawarneh, M. B. Yassein, W. A. Talatha, A multithreaded pro-
gramming approach for multimedia big data: encryption system, MTA
77 (2018) 10997-11016.

D. Weng, Performance and energy evaluation of lightweight cryptogra-
phy for small IoT devices, in:. UEMCON, IEEE, 2023, pp. 289-295.
R. Cantoro, N. I. Deligiannis, M. S. Reorda, M. Traiola, E. Valea, Eval-
uating data encryption effects on the resilience of an artificial neural
network, in: DFT, IEEE, 2020, pp. 1-4.

C.-J. Wang, P.-P. Li, X.-Y. Zhou, N. Liu, Privacy-preserving breast
cancer prediction via inner-product functional encryption, in: ICCC,
IEEE, 2021, pp. 539-543.

G. Gupta, K. Lakhwani, An enhanced approach to improve the encryp-
tion of big data using intelligent classification technique, Multimedia
Tools and Applications 81 (18) (2022) 25171-25204.

M. M. Rovnyagin, K. V. Timofeev, A. A. Elenkin, V. A. Shipugin,
Cloud computing architecture for high-volume ML-based solutions, in:
EIConRus, IEEE, 2019, pp. 315-318.

C. Figueroa, T. Knowles, V. Kukreja, C.-H. Lung, IoT management
with container orchestration, in: ICEIB, IEEE, 2023, pp. 49-54.

N. Joraviya, B. N. Gohil, U. P. Rao, DL-HIDS: deep learning-based
host intrusion detection system using system calls-to-image for con-
tainerized cloud environment, The Journal of Supercomputing (2024)
1-29.

S. Arisdakessian, O. A. Wahab, A. Mourad, H. Otrok, Towards instant
clustering approach for federated learning client selection, in: ICNC,
[EEE, 2023, pp. 409-413.

H. Siddiqui, F. Khendek, M. Toeroe, Microservices based architectures
for TIoT systems-state-of-the-art review, IoT (2023) 100854.

H. S. Sarjoughian, F. Fallah, S. Saeidi, E. J. Yellig, Transforming dis-
crete event models to machine learning models, in: WSC, IEEE, 2023,
pp. 2662-2673.

B. Heisele, P. Ho, T. Poggio, Face recognition with support vector

machines: Global versus component-based approach, in: ICCV, Vol. 2,
[EEE, 2011, pp. 688-694.

60

194]

[195]

[196]

197]

198]

[199]

200]

201]

202]

[203]

204]

[205]

N. B. Kumarakulasinghe, T. Blomberg, J. Liu, A. S. Leao, P. Papa-
petrou, Evaluating local interpretable model-agnostic explanations on
clinical machine learning classification models, in: CBMS, IEEE, 2020,
pp. 7-12.

T. Mori, N. Uchihira, Balancing the trade-off between accuracy and
interpretability in software defect prediction, ESE 24 (2019) 779-825.

V. Bhargava, M. Couceiro, A. Napoli, LimeOut: an ensemble approach
to improve process fairness, in: ECML PKDD, Springer, 2020, pp. 475—
491.

N. Burkart, M. Huber, P. Faller, Forcing interpretability for deep neural
networks through rule-based regularization, in: ICMLA, IEEE, 2019,
pp. 700-705.

M. Soui, I. Gasmi, S. Smiti, K. Ghédira, Rule-based credit risk as-
sessment model using multi-objective evolutionary algorithms, Expert
systems with applications 126 (2019) 144-157.

M. I. Rey, M. Galende, M. J. Fuente, G. Sainz-Palmero, Multi-objective
based fuzzy rule based systems (FRBSs) for trade-off improvement in
accuracy and interpretability: A rule relevance point of view., KBS 127
(2017) 67-84.

L. Liao, H. Li, W. Shang, L. Ma, An empirical study of the impact
of hyperparameter tuning and model optimization on the performance
properties of deep neural networks, TOSEM 31 (3) (2022) 1-40.

W. Romsaiyud, H. Schnoor, W. Hasselbring, Improving k-nearest
neighbor pattern recognition models for privacy-preserving data anal-
ysis, in: Big Data, IEEE, 2019, pp. 5804-5813.

L. Liu, J. Yu, Z. Ding, Adaptive and efficient GPU time sharing for
hyperparameter tuning in cloud, in: ICPP, 2022, pp. 1-11.

D. K. Jain, A. K. Dutta, E. Verda, S. Alsubai, A. R. W. Sait, An
automated hyperparameter tuned deep learning model enabled facial
emotion recognition for autonomous vehicle drivers, Image and Vision
Computing 133 (2023) 104659.

Y. N. Kunang, S. Nurmaini, D. Stiawan, B. Y. Suprapto, Attack clas-
sification of an intrusion detection system using deep learning and hy-
perparameter optimization, JISA 58 (2021) 102804.

L. Wu, G. Perin, S. Picek, I choose you: Automated hyperparameter

61

[206]

1207]

[208)]

[209]

[210]

211]

212]

[213]

214]

[215]

216]

tuning for deep learning-based side-channel analysis, Trans. Emerg.
Topics Comput. (2022).

R. K. Batchu, H. Seetha, A generalized machine learning model for
DDoS attacks detection using hybrid feature selection and hyperpa-
rameter tuning, Computer Networks 200 (2021) 108498.

S. B. Feroz, N. Sharmin, M. S. Sevas, An empirical analysis of hy-
perparameter tuning impact on ensemble machine learning algorithm
for earthquake damage prediction, Asian Journal of Civil Engineering
(2024) 1-27.

V. Perrone, M. Donini, M. B. Zafar, R. Schmucker, K. Kenthapadi,
C. Archambeau, Fair bayesian optimization, in: AIES, 2021, pp. 854—
863.

X. Gao, J. Zhai, S. Ma, C. Shen, Y. Chen, Q. Wang, FairNeuron: im-
proving deep neural network fairness with adversary games on selective
neurons, in: ICSE, 2022, pp. 921-933.

I. Dagan, R. Vainshtein, G. Katz, L. Rokach, Automated algorithm
selection using meta-learning and pre-trained deep convolution neural
networks, Information Fusion 105 (2024) 102210.

J. Bossek, P. Kerschke, H. Trautmann, A multi-objective perspective
on performance assessment and automated selection of single-objective
optimization algorithms, ASC 88 (2020) 105901.

S. Shahoud, M. Winter, H. Khalloof, C. Duepmeier, V. Hagenmeyer,
An extended meta learning approach for automating model selection in
big data environments using microservice and container virtualizationz
technologies, IoT 16 (2021) 100432.

R. Trajanov, S. Dimeski, M. Popovski, P. Korosec, T. Eftimov, Ex-
plainable landscape analysis in automated algorithm performance pre-
diction, in: EvoStar, Springer, 2022, pp. 207-222.

W. Hutiri, A. Y. Ding, F. Kawsar, A. Mathur, Tiny, always-on, and
fragile: Bias propagation through design choices in on-device machine
learning workflows, TSEM 32 (6) (2023) 1-37.

M. Hort, Z. Chen, J. M. Zhang, M. Harman, F. Sarro, Bias mitigation
for machine learning classifiers: A comprehensive survey, JRC (2023).
R. Ghani, K. T. Rodolfa, P. Saleiro, S. Jesus, Addressing bias and

fairness in machine learning: A practical guide and hands-on tutorial,

in: SIGKDD, 2023, pp. 5779-5780.

62

217)

218]

219]

[220]

[221]

[222]

[223]

224]

[225]

[226]

[227)

28]

S. Jain, P. Kumar, Cost effective generic machine learning operation:
A case study, in: ICDSNS, TEEE, 2023, pp. 1-6.

7. Chen, J. M. Zhang, F. Sarro, M. Harman, A comprehensive empir-
ical study of bias mitigation methods for machine learning classifiers,
TSEM (2023).

M. Miceli, J. Posada, T. Yang, Studying up machine learning data:
Why talk about bias when we mean power?, Human-Computer Inter-
action 6 (GROUP) (2022) 1-14.

S. Ramirez-Gallego, B. Krawczyk, S. Garcia, M. Wozniak, F. Herrera,
A survey on data preprocessing for data stream mining: Current status
and future directions, Neurocomputing 239 (2017) 39-57.

M. C. Rendleman, J. M. Buatti, T. A. Braun, B. J. Smith,
C. Nwakama, R. R. Beichel, B. Brown, T. L. Casavant, Machine learn-
ing with the TCGA-HNSC dataset: improving usability by addressing
inconsistency, sparsity, and high-dimensionality, BMC bioinformatics
20 (2019) 1-9.

K. Shivashankar, A. Martini, Maintainability challenges in ML: A sys-
tematic literature review, in: SEAA, IEEE, 2022, pp. 60-67.

N. A. Hikal, M. Elgayar, Enhancing IoT botnets attack detection using
machine learning-IDS and ensemble data preprocessing technique, in:
ITAF, 2020, pp. 89-102.

M. A. Bouke, A. Abdullah, An empirical study of pattern leakage im-
pact during data preprocessing on machine learning-based intrusion de-

tection models reliability, Expert Systems with Applications 230 (2023)
120715.

C. V. G. Zelaya, Towards explaining the effects of data preprocessing
on machine learning, in: ICDE, 2019, pp. 2086—-2090.

M. M. Basha, P. Kuppusamy, F-DDPT: An efficient fuzzy-based auto-
mated preprocessing technique to support explainability, in: ICCDN,
Springer, 2022, pp. 283-296.

Y. Sun, F. Haghighat, B. C. Fung, Trade-off between accuracy and
fairness of data-driven building and indoor environment models: A
comparative study of pre-processing methods, Energy (2022).

H. S. Obaid, S. A. Dheyab, S. S. Sabry, The impact of data pre-

processing techniques and dimensionality reduction on the accuracy
of machine learning, in: IEMECON, IEEE, 2019, pp. 279-283.

63

[229]

[230]

[231]

232]

[233]

[234]

[235]

[236]

[237]

[238)]

S. Sajid, B. M. von Zernichow, A. Soylu, D. Roman, Predictive data
transformation suggestions in grafterizer using machine learning, in:
MTSR, Springer, 2019, pp. 137-149.

S. Oppold, M. Herschel, A system framework for personalized and
transparent data-driven decisions, in: CAiSE, Springer, 2020, pp. 153—
168.

N. B. Ding, E. Mit, A framework of data quality assurance using ma-
chine learning, in: CITA, IEEE, 2023, pp. 88-93.

E. Seo, H. Kim, T.-M. Chung, Profiling-based classification algorithms
for security applications in Internet of Things, in: ICIOT, IEEE, 2019,
pp- 138-146.

W. Epperson, V. Gorantla, D. Moritz, A. Perer, Dead or alive: Con-
tinuous data profiling for interactive data science, IEEE Transactions
on Visualization and Computer Graphics (2023).

S. Tverdal, A. Goknil, P. Nguyen, E. J. Husom, S. Sen, J. Ruh,
F. Flamigni, Edge-based data profiling and repair as a service for 1oT,
in: ToT, 2023, pp. 17-24.

S. Alla, S. K. Adari, S. Alla, S. K. Adari, What is MLOps?, Beginning
MLOps with MLFlow: Deploy Models in AWS SageMaker, Google
Cloud, and Microsoft Azure (2021) 79-124.

S. Barney, K. Petersen, M. Svahnberg, A. Aurum, H. Barney, Soft-
ware quality trade-offs: A systematic map, Information and software
technology 54 (7) (2012) 651-662.

V. Mohan, L. B. Othmane, Secdevops: Is it a marketing buzzword?-
mapping research on security in devops, in: 2016 11th international
conference on availability, reliability and security (ARES), IEEE, 2016,
pp. 542-547.

M. Staron, Action research in software engineering, Springer, 2020.

64

