
Cross-Platform Edge Deployment of Machine

Learning Models: A Model-Driven Approach

Albin Karlsson Landgren1, Philip Perhult Johnsen1,
Daniel Strüber1,2*

1*Department of Computer Science and Engineering, Chalmers
University of Technology and University of Gothenburg, Sweden.

2Department of Software Science, Radboud University, Netherlands.

*Corresponding author(s). E-mail(s): danstru@chalmers.se;
Contributing authors: albk@student.chalmers.se;

perhult@student.chalmers.se;

Abstract

Deploying machine learning (ML) models on edge devices presents unique chal-
lenges, arising from the different environments used for developing ML models
and those required for their deployment, leading to a gray area of competence
and expertise between ML engineers and application developers. In this paper,
we explore the use of model-driven engineering to simplify the deployment of ML
models on edge devices, specifically smartphones. We present a DSL for the spec-
ification of the ML serving pipelines (pre- and postprocessing of data before and
after inference), together with a model interpretation approach that allows to
make changes to the pipeline during runtime, thus removing the need to re-release
an application upon changes to a pipeline. We followed a design science approach,
in which we elicited requirements through an initial artifact study and interviews
with engineers at an industrial partner. This was followed by the design and
implementation of a lightweight, JSON-based domain-specific language designed
to describe ML serving pipelines, along with an accompanying Flutter library to
execute the pipelines during runtime. A preliminary evaluation with four develop-
ers shows the potential of this approach to increase development speed, decrease
the amount of code required to make changes to an ML serving pipeline, and
make less-experienced engineers more confident contributing to the domain.

Keywords: model-driven engineering, MDE4AI, AI engineering, mobile applications

1

Author preprint for a paper accepted for publication in Software and Systems Modeling (SoSyM)

1 Introduction

When deploying a machine learning (ML) model1, the choice of target platform can
have a significant impact on the ease of deployment. Models are often designed, trained,
and deployed in a Python environment using libraries such as TensorFlow or PyTorch
[1], with the same group of engineers maintaining control during the entire process.
However, there are cases where the same toolchain or platform is not available through-
out the whole process. One such example arises when deploying machine learning
models on edge devices, specifically smartphones. In such scenarios, there is a chance
that the training and deployment environments are different and that the deployment
environment only contains the already trained models. Thus, the engineers deploying
the models to applications might not know how to format model inputs and outputs.
Therefore, they might land in a gray area of competence and responsibility between
those developing and deploying the models. The ML engineers developing the models
have most of the knowledge related to the actual models, while the application engi-
neers know the deployment platform, but might lack the crucial context required to
effectively deploy the model.

To add to the development and deployment scenario, further complexity arises
since the development is happening in a cross-platform environment, a consequence
of smartphone applications being developed for separate platforms (typically, iOS and
Android). By bridging the gap between the different engineering roles and simultane-
ously reducing the amount of equivalent code being written twice, the intention is to
improve knowledge-sharing across engineering teams, improve developer experience,
and facilitate experimentation and flexibility in development.

In this paper, we aim to simplify the process of deploying ML models on edge
devices, specifically smartphones. When, for example performing ML inference on
image data from a smartphone camera, a series of pre- and post-processing steps is
required before and after performing the inference, as different models require inputs
of different shapes and output results of different shapes. These steps collectively form
a pipeline, referred to as an ML serving pipeline.

We explore the use of model-driven engineering to facilitate the development and
maintenance of ML serving pipelines on smartphones using model-driven engineering
(MDE). Specifically, we propose a domain-specific language (DSL) and accompanying
library. The DSL allows developers to easily specify and make changes to ML serving
pipelines deployed on smartphones. The accompanying library supports the execution
of the pipeline using platform-specific functionality, based on the contents of a model
(DSL instance). The DSL acts as a platform to facilitate a shared understanding of
an ML serving pipeline between the ML engineer and application engineer.

We conducted this work in collaboration with Wiretronic AB and their AI division
in Gothenburg. Wiretronic develops image-based ML products (e.g. object detection
and computer vision), including a suite of smartphone applications [2, 3]. As a part of
this product palette, the company deploys ML models directly on devices, where the

1In this paper, the term “model” generally refers to machine learning models. When we address software
models in the sense of model-driven engineering, we generally use the term DSL instances, except for
specific contexts, e.g., model interpretation, which is a fixed technical term, explained in Section 2.

2

variety in architecture and operating systems can make it more difficult to deploy soft-
ware effectively. The applications and corresponding libraries developed at Wiretronic
are written in Flutter [4], a library for the Dart programming language enabling
cross-platform development of native apps for iOS and Android. Whilst a majority of
the functionality can be developed in Flutter, some aspects require writing platform-
specific code. This often entails working directly with hardware resources on the device,
such as the device’s camera, or hardware-optimized ML libraries [5, 6]. Thus, the devel-
oper is required to write equivalent implementations for two platforms, underlining
the challenges in deploying ML models on smartphones. Since the platform-specific
code is constrained to a very specific domain, we saw the potential that this the work-
flow can be enhanced. By lifting the development to a suitable level of abstraction and
making use of model-driven engineering techniques our industry partner could avoid
having to write equivalent, domain-specific code for multiple platforms.

The deployment of ML models on smartphones or edge devices, in general, can
cause problems with maintenance and updates. When deploying an ML model on a
centralized server, the developer can have near full control over that server and perform
updates as needed, without users noticing or requiring manual work. Meanwhile, when
developing and deploying ML models for smartphones, this process is non-trivial. If
the ML model and related functionality are bundled and shipped with the application
when installed on a user’s device, we must re-publish the application to the app store
of each platform upon making changes or updates and the user must reinstall the
application. An alternative method to this is to view the model as an asset to fetch
from the application, allowing for easier updates. However, this still requires developers
and users to perform the update process if a new version of the ML model requires a
different serving pipeline.

In combination, these issues create problems with knowledge-sharing, developer
experience, and flexibility when working with ML models on smartphones. It is unclear
who is responsible and most suited to handle the deployment of the ML models, the
code often has to be written for two separate platforms, and then subsequently re-
deployed for these separate platforms’ app stores. By using a DSL and model-driven
engineering, we can address communication difficulties, create a single source of truth
for the ML serving pipeline, and decrease development as well as deployment efforts.
Subsequently, this can also improve the end-user experience since updates to the ML
performance can occur without them noticing or having to update the application.

The study is guided by the findings from studying the role of MDE in edge-deployed
ML and applied to the specific context of cross-platform mobile development. We
assume a scenario in which an ML model is available as a result of a model development
process, which may be carried out by training a new model from scratch, or by fine-
tuning a pre-trained model. Our focus is on the deployment of this ML model to edge
devices with multiple different platforms. Specifically, we will explore how a DSL can
be designed and utilized to enhance this deployment, centered around the following
research questions:

• RQ1: How can we design a domain-specific language (DSL) for an ML model with
its required inputs, outputs, and pre- and post-processing stages?

3

• RQ2: How can we best implement and utilize the DSL in a concrete setting,
specifically in the development of cross-platform mobile applications?

• RQ3: To what extent does the introduction of a DSL and an accompanying
library improve the developer experience in the aspects of maintenance, feature
development, time-saving, and resource planning?

This paper is accompanied by an online artifact [7] containing the implementation
code as well as evaluation artifacts and data.

This rest of this paper is structured as follows: In Sect. 2, we introduce necessary
background. In Sect. 3, we introduce our overall methodology. Section 4 is devoted
to describing the design and implementation of our solution. Section 5 describes the
detailed methodology and results for our evaluation. In Sect. 6, we discuss our results,
before discussing related work in Sect. 7 and concluding in Sect 8.

2 Background

We now present relevant background of this work.

2.1 Edge-deployed Machine Learning

Edge-deployed ML refers to deploying ML models on edge devices instead of on a
centralized server. An edge device can, for example, be a smartphone or Internet of
Things (IoT) device, which generally has far simpler hardware than a server in a
data center. The deployment of ML models on edge devices has become significantly
more common in recent years thanks to advancements in both software and hardware
[8–10]. Despite the less advanced hardware, deploying machine learning models on
edge devices presents several advantages when compared to a centralized approach.
Transmitting potentially sensitive or private data to a remote server introduces the
risk of data leakage, with a fault in the remote system potentially leading to per-
sonal or financial consequences [9]. Additionally, eliminating the need for connecting
to an external service for ML inference can improve both latency and reliability, as
the potential bottleneck introduced by a weak network connection is removed. Despite
these improvements, deploying ML models on edge devices, specifically smartphones,
is not straightforward. One reason for this is the heterogeneity of underlying architec-
ture [11]. A wide selection of libraries to deploy ML models on smartphones exists,
but they each perform differently depending on the device’s hardware configuration. A
difference in cache size or GPU capacity can cause two libraries accomplishing equiv-
alent tasks to perform differently, and with the wide range of hardware configurations
present in the market, it is difficult to develop a solution optimal for every device [11].
Additionally, opting to deploy an ML model on devices instead of in a centralized
environment can create obstacles to improvement and maintenance. When deploying
an ML model in a centralized environment, the developer has full control over soft-
ware and hardware and can develop the artifacts surrounding the model for a single
environment. If the development is instead targeted at smartphones, the model has to
be deployable on both iOS and Android devices, which each have distinct underlying
architectures for deploying custom ML models [5, 6].

4

2.2 Cross-Platform Mobile Development

Mobile developers targeting both iOS and Android users may opt for a cross-platform
framework, which enables the creation of separate, native builds for both platforms
from a single codebase. The two most widely used frameworks for this purpose are Flut-
ter and React Native [12]. Flutter is an open-source framework for the Dart language
maintained by Google, while React Native is a JavaScript framework maintained by
Meta. While there are some differences in architecture, both frameworks abstract away
platform-specific details, allowing developers to focus on a single, platform-agnostic
codebase. This abstraction layer translates the shared code into platform-specific com-
ponents, aiming to achieve native functionality and performance for both iOS and
Android. When requiring access to platform-specific features, often hardware, devel-
opers can opt to write native code for each platform. Although React Native has a
new architecture in development that will allow for easier communication between the
cross-platform and native layers, current implementations of both Flutter and React
Native require serialization of data for inter-layer communication [13, 14].

2.3 Model-Driven Engineering (including Model
Interpretation)

Model-Driven Engineering (MDE) reshapes software engineering by emphasizing high-
level abstraction and model-centric approaches. In particular, the abstractions offered
by MDE through modeling languages abstract away platform-specific details, facili-
tating easier adaptation of new technologies and development for multiple-platform
environments [15]. There are several approaches to go from a model to executable
software. One such approach commonly applied is code generation, where a model
is transformed into a program in a suitable language that can subsequently be exe-
cuted. This process allows for developer intervention where needed since the generated
code can be edited upon generation. Furthermore, as a consequence of the code being
generated before execution, this approach does not introduce any run-time overhead.
However, while avoiding performance overhead, a disadvantage of code generation is
having to re-generate and re-deploy the software if making changes to a model [15].

As an alternative to code generation, software development can be automated in
MDE using model interpretation [15]. Model interpretation does not generate code,
it instead implements a generic engine, e.g. a library, that parses and executes the
model on the fly. This comes with several advantages as noted by Brambilla et al. [15]:
it allows making changes to the model or engine without an added code generation
step, easier portability between platforms, and not having to interact directly with the
source code. Possible disadvantages are a negative impact to performance, due to the
overhead of the interpretation engine, as well as potentially making the system more
difficult to debug, as bugs could be in the interpretation engine itself.

2.4 Domain-Specific Languages (DSLs) with JSON Schema

Domain-specific languages (DSLs) are widely used in model-driven engineering to sup-
port the specification of software at exactly the right level of abstraction [16]. A DSL
is a custom-tailored language for a particular domain of expertise. Developing a DSL

5

involves the definition of an abstract syntax that defines the concepts the language
consists of, and one or several concrete syntaxes defining the appearance of the lan-
guage (typically textual or visual) and the way it is edited [15]. Developing DSLs can
be done in both language workbenches, such as Xtext [17], GEMOC, and MetaEdit+,
or by using more lightweight approaches, such as a JSON Schema [18]. Language
workbenches support the automated generation of comprehensive editor tooling for a
given DSL. However, while the resulting editors are powerful, they typically require
the commmitment to specialized technologies and platforms, which can be a source of
concern for companies.

As a more light-weight alternative to using a language workbench, JavaScript
Object Notation (JSON) can be used to define DSLs [19]. JSON is a data serialization
format widely adopted to either store data physically or transfer it over the inter-
net [20]. It is a semi-structured document format, that is possibly the most popular
format for data exchange over the internet [21, 22]. It allows developers and IT profes-
sionals to transfer data structures across programming languages and environments,
without having to worry about said environments. Instead, the data can be serialized
or parsed in any language. JSON Schemas and JSON documents differ in their pur-
pose. A JSON document contains the data to be sent or stored, organized in JSON
objects. Meanwhile, JSON Schemas are used to define the structure of which a JSON
document should adhere to, to ensure compatibility and consistency. The schema can
then also be used to validate a JSON document [23].

JSON Schemas are the standard schema language for structuring JSON data. It
is based on a combination of structural operators that describe values, arrays, and
objects, with logical operators like negation, conjunction, and disjunction [24]. JSON
Schema validators have been developed for many programming languages and they
are used to make software and data transfer more reliable [20].

3 Methodology

This study employs an engineering research (a.k.a. design science) methodology, as it
focuses on “research that invents and evaluates technological artifacts”. [25] Firstly, we
conducted research into the potential role of MDE in the deployment of ML models
on edge devices and formulating relevant requirements. We applied these findings to
develop an artifact to solve the specific problem of deploying ML models in cross-
platform mobile environments, and evaluated it through a controlled experiment with
developers from our industrial partner as well as analysing requirement satisfaction.
The problem is being addressed through the three aforementioned research questions
and three distinct cycles explained in Section 3.1.

3.1 Design Science Cycles

Following the design science process presented by Knauss [26], each cycle was centered
around a specific phase in the design science process while iteratively advancing the
understanding and progress of each research question. Below is a summary of the work
conducted in each cycle of the study.

6

• Cycle 1 (RQ1): This cycle was about a major focus on research and understand-
ing of the domain. We developed small proof-of-concept solutions and evaluated
their viability in this context. We identified clear requirements for our artifact,
both functional and non-functional, to deepen our knowledge about the domain and
Wiretronic’s needs. We employed tools such as interviews, frequent conversations
with employees, and inspection of source code.

• Cycle 2 (RQ2): This cycle primarily focused on applying our findings through
the concrete implementation of the artifact, iteratively verifying the development
against the requirements specified by Wiretronic. Complemented with research into
our domain and specific implementation details.

• Cycle 3 (RQ3): We evaluated our developed artifact by conducting a two-fold
evaluation. Firstly, we conducted an internal evaluation, focusing on the require-
ments defined in cycle 1. Secondly, an external evaluation in collaboration with our
supervisor from Chalmers and the respondents at Wiretronic. To test the suitability
of our artifact we conducted a controlled experiment at Wiretronic, in which two
groups performed a set of tasks using the existing approach and the new approach.
The two groups were measured with respect to time, lines of code, and correct-
ness. Additionally, a final interview to evaluate their experiences of implementing
cross-platform specific code using our new approach compared to the old approach.

3.2 Cycle 1: Domain Understanding and Initial Artifact
Definition

As stated, we spent most of the first cycle researching the domain and its specific
representation at Wiretronic, using this information to help define our requirements
and the scope of the study. This section covers the methods applied during this phase.

3.2.1 Repository Analysis and Exploratory Program
Comprehension

We spent part of the first cycle examining an existing library developed at Wiretronic.
This library powers all of Wiretronic’s machine learning operations on edge devices,
here limited to smartphones. This was primarily done as a program comprehen-
sion activity, as we required a thorough understanding of the domain and current
state of development to have informed discussions with engineers at the company,
identify constraints for future requirements elicitation, and find potential areas of
enhancement.

The applications are written in Flutter, using Java for Android-specific functional-
ity and Swift for iOS-specific functionality. This resulted in large parts of the program
comprehension being conducted twice, as the machine learning code was implemented
both in Java and Swift. This gave us two possibilities to understand most of the
relevant code instead of one. Aside from serving as a tool to inform our require-
ments elicitation and development, analysis of the library was used as a tool to better
understand the Flutter architecture and how it handles communication between the
cross-platform and native layers.

7

3.2.2 Interviews

At Wiretronic, there were two engineers with experience in applications and libraries
relevant to the study, therefore these two were chosen for qualitative interviews. The
interviewees had experience both in developing the ML models and deploying them
on devices, which allowed us to obtain a holistic view of their current processes with
a small number of interviewees. The interviews, conducted as part of our problem
exploration in the first cycle, aimed to document workflows and challenges to inform
our subsequent requirements elicitation. While the interviews were conducted during
the initial phase of the study, they were not conducted immediately. We deemed it
necessary to first grasp the theoretical concepts relevant to the study, in addition to
performing program comprehension. This was done to ensure we would go into the
interviews well-informed and that they would serve their purpose.

Label Role Platforms Experience
Interviewee A Engineer/System Architect ML + iOS 4 years
Interviewee B Engineer/System Architect ML + Android 4 years

Table 1 List of interviewees participating in initial interviews.

The interviews were conducted in a semi-structured format to obtain both quan-
titative data, such as tools currently in use, and deeper, qualitative insights into
workflows and challenges. To allow for this structure, we used a set of pre-defined
questions (available in the appendix) in combination with follow-up questions to elicit
more detailed information. Each session began with a standardized introduction to
maintain consistency across interviews, regardless of the participants’ prior knowledge
of the study. When crafting the interview questions, we deliberately included some
questions where we expected to already know the answer. This measure was taken to
ensure that basic needs, or must-be requirements, were not overlooked. These require-
ments are often taken for granted and go unnoticed if fulfilled, but failing to fulfill
them can render the artifact unusable [27].

Upon conducting the interviews, we analyzed them as part of our requirements
identification. Since the majority of the interview content was equivalent across the two
interviews, they could be directly compared to identify challenges and pain points iden-
tified by both engineers. We also followed up the interviews with informal discussions,
helping us draw conclusions and inform requirements when opinions or statements
presented in the interviews were conflicting.

3.2.3 Requirements Engineering

We used the insights obtained from examining relevant repositories at Wiretronic
and interviewing engineers when specifying our requirements. Analyzing repositories
gave us a good overview of their existing systems and possible areas of improvement
within our scope. Additionally, the interviews were valuable in providing context to our
findings, ensuring that they align with the requirements and priorities of the company.

Based on the initial interviews, to move from requirements elicitation to require-
ments identification, we proceeded in two steps: First, we derived a set of user stories,

8

centered around a persona representing a developer at Wiretronic. Second, from the
user stories, we derived more concrete functional and non-functional requirements.
These two steps helped us bridge the requirements elicitation and requirements identi-
fication phases, consolidating the information we had obtained without getting caught
up in implementation details.

A user story [28] is a concise, simple description of a feature written from the
perspective of an end-user, often used in agile settings. We derived our set of user
stories from the initial interviews described in Sect. 3.2.2, by examining our notes
and recordings taken during the interviews with the aim to identify the intended key
features from the perspective of a developer who uses the envisioned artifact. This
process lead to a set of user stories that, finally, were validated with our industry
partner

After defining a set of suitable user stories we began defining requirements, both
functional and non-functional, rooted in the user stories. Naturally, this phase helped
in setting up a set of more concrete, measurable goals for the project. Defining the
requirements was an important tool in defining the scope of our study and creat-
ing a mutual understanding of priorities among ourselves and with the engineers at
Wiretronic. Furthermore, the requirements were vital for the third and final cycle of
the study, when performing validation and verification of the developed artifact.

3.3 Cycle 2: Artifact Design and Development

The purpose of the second cycle was two-fold: it first involved transforming the data
collected in the first cycle to well-informed technology and design choices, and sec-
ondly, it involved designing and implementing the artifact. This section covers how we
conducted this transformation, as well as how the design and implementation phase
was conducted.

3.3.1 Design and Technology Choices

This section and the choices we made can be divided into two separate areas making
up our artifact: the DSL and the accompanying library.

When designing the DSL, the primary guiding factor was the interviews with engi-
neers, as no similar project had been conducted at Wiretronic before. The interviews,
informed by the initial research activities, helped us narrow down what specific pur-
pose we should aim to solve. The technologies chosen for the library are primarily
rooted in practices already in place at Wiretronic to avoid obstacles in the handover of
the artifact at the end of the study and to ensure compatibility with relevant applica-
tions. This information was elicited through the interviews and our analysis of existing
repositories.

The possibility of using a JSON Schema to define the DSL was explored before the
actual study began. Through the interviews and subsequent requirements engineering
it was deemed a viable and preferable option during the first research cycle. We found
that the main role of the DSL would be to describe an ML serving pipeline, and not
write the actual implementation and logic, thus making a JSON Schema a fitting
choice. After this decision was made, more focus was put into how to best describe the

9

model metadata and the pre- and postprocessing steps. This involved going through
the existing models and comparing which aspects of the current ML serving pipelines
that are shared, and which are unique for one or a set of specific models.

After identifying the required content of the DSL, the concrete syntax had to
be established. Thanks to the lightweight nature of JSON Schemas in contrast to
developing a programming language, we were able to iterate on the syntax quickly
and try out several variations of the syntax in a single working session. Additionally,
some of the choices of this process were made automatically due to limitations of the
JSON specification, as highlighted in Section 4.3.2.

The library was designed in parallel with the DSL, ensuring both that any additions
or changes made to the DSL would be feasible to implement in the library and that we
could find a suitable place for them. When designing the functionality for preparing
and running the actual ML serving pipeline, we made several choices based on our
initial research and the interview feedback.

It was clear that, since a camera-based ML application can receive data as a stream
of images, the overhead introduced by our library must be minimal. This meant that
we wanted to avoid parsing the DSL instance each time, and also avoid conditional
statements during execution, based on the parsed DSL instance. Thus, we implemented
the pre- and postprocessing as a series of individually contained steps, all implement-
ing an interface with the necessary method stubs. Thus, the pipeline lists consist of
generic pre- and postprocessors, and not the concrete implementation, according to
the dependency inversion principle [29].

This helped us separate the preparation and execution of the pipeline, as all steps
had a method for setting it up with all the correct parameters and a separate method
for executing it. While this was mainly done to eliminate any DSL-related logic during
execution, it also helped when designing the functionality to implement custom pre-
or postprocessing steps. By allowing the developer to implement an anonymous class
implementing the interface directly in the consuming application, they can be confident
that the step will be compatible with the pipeline, as long as the implementation is
fault-free. In MDE, this functionality is considered part of the model engine, which is
presented in more detail in Section 4.3.3

3.4 Cycle 3: Artifact Evaluation

We evaluated the developed artifact in a threefold way: First, through a comparison
with the initial vision and requirements from our industry partner Wiretronic. Second,
by a controlled experiment involving several of their engineers. To assess the artifact’s
impact under controlled conditions, two groups of engineers performed tasks with and
without the artifact alternately. Third, through unit and integration testing.

We describe the first two steps, that is, the methodology and results of our
requirements validation and user study, in a dedicated section (Sect. 5).

Our unit and integrating testing efforts for focused on those areas of our implemen-
tation that are important for supporting the findings of our paper, in particular, in
the context of the user study and requirements validation. Our unit test suite includes
a total of 20 test cases for the functionality related to loading, setting up and running
the pipeline from an available DSL instance. We tested whether the loading and the

10

provided functionality (e.g., custom pre -and postprocessors) work as intended. Our
manual testing worked by testing the deployed framework from the perspective of a
potential user, on the same DSL instances that we used for our experiments. The final
version of our software passes all test cases.

4 Results

This chapter presents the findings of our study, the subsequent artifact implemen-
tation, and the evaluation of the artifact. It lays out the requirements that guided
the artifact implementation and evaluation, along with the reasoning behind each
requirement.

4.1 Initial Problem Exploration

This section is dedicated to presenting our findings from the first cycle, focused on
defining the artifact. This entails our repository analysis and interviews.

4.1.1 Interview Findings

We primarily obtained insights into existing development processes and potential
enhancements through the engineer interviews. Interviewee B stated that a DSL and
accompanying tools would help in the development and testing of ML serving pipelines,
specifically for iOS. Stating that since he does not use MacOS, a requirement for build-
ing iOS applications in Swift, he can not currently develop for iOS. Instead, if making
changes to an ML serving pipeline, he would have to write and test the changes in
Java and then pass development to Interviewee A, who can implement the equivalent
functionality for iOS in Swift. He mentioned that with a DSL he could instead define
an ML serving pipeline using the DSL and then be confident that the iOS imple-
mentation will work, as long as the DSL instance is written correctly. Interviewee A
independently pointed this out as well, underlining the fact that native development
and related communication are obstacles in their current workflow. Furthermore, the
two engineers agreed that an additional problem they would like to solve is having to
publish a new version of the library when either making a change to an ML serving
pipeline or implementing a new model.

When asked about the language design, Interviewee B stated that they would
prefer writing the pipeline steps in a format they are familiar with and can get used
to quickly rather than a completely custom DSL since there are only two platforms.
They used the reasoning that if they were to learn a new language or platform, they
could learn the other platform (in their case, iOS/Swift) instead of a new DSL.

The two interviewees presented slightly different approaches to implementing the
DSL in an application. Interviewee B suggested that it could be a part of the build
process, i.e. generating platform-specific code for the ML pipeline when compiling
the application. Interviewee A, however, noted that he would prefer that the DSL be
bundled with the application, loaded and parsed during runtime, and then used to
configure the pipeline. This suggestion can be classified as a model interpretation-based
approach, as it parses and executes a model during runtime [15]. This process requires

11

including all possible pipeline operations in the application bundle. He stated that
the performance implications would be negligible, especially in comparison to loading
an ML model from either the disk or over the network, which is already done in the
applications. The suggestion by Interviewee B would satisfy their shared pain point
of having to republish the library when making a change to an ML serving pipeline,
but it would still require publishing a new version of the application. Interviewee A’s
suggestion would also remove this step, but it could prove less flexible if a developer
needs to add currently non-existent functionality or functionality not general enough
to be part of the library.

4.1.2 Impact on Artifact Development

Here we present some decisions made after conducting our initial studies and inter-
views. While Section 4.3 explores the design and implementation of our artifact in
more detail, this section aims to provide relevant context for Section 4.2, which lays
out the requirements guiding the artifact development.

When re-examining the problem after our research and interview study, we decided
to opt for an approach based on model interpretation. This decision was primarily
driven by two factors. Firstly, the interviews along with further discussions with engi-
neers confirmed that the set of operations used for image transformation is limited and
overlaps significantly across pipelines, confirming our previous findings from examin-
ing repositories. This highlighted that the configuration of arguments would benefit
more from abstraction than the development of completely new functionality. Sec-
ondly, by opting for a model interpretation-based approach, the need to release a new
library or application version upon making changes to the pipeline is removed, as pre-
viously highlighted. Instead, the pipeline can be updated dynamically, for example by
fetching it from a remote server, thanks to the required functionality being bundled
in configurable modules with the application.

While it seems suitable for this scenario, opting for a model interpretation-based
approach may bring drawbacks. As highlighted previously, if a new ML model that
requires custom preprocessing functions is introduced, this functionality will not be
present in the library. In this case, the DSL and library either have to be extended
to include this functionality, or we would need to include a way for a developer to
reference one-off functions residing in the application in the DSL with suitable syntax.
This does in turn introduce a problem of runtime safety. If we fetch a new DSL instance
and this includes functionality not present in the application, the pipeline will not be
configured correctly.

Upon discussions with engineers, we still deemed the model interpretation-based
approach to be most suitable. If using code generation and avoiding runtime con-
figuration, completely new functionality not supported by the DSL would still
require substantial maintenance work and manual updating of either the library or
applications consuming it.

As highlighted by our interview study, the DSL needs to be easy to learn and adopt
compared to mastering a new platform. This, in combination with our specific context
of defining a machine learning serving pipeline using pre-defined functionalities, we
decided that employing a JSON Schema for the DSL would be an effective approach.

12

This choice seemed more suitable than opting for a more complex and advanced tool
like Xtext since the primary goal is to describe pipeline steps and we do not require
more detailed application logic within the DSL. Utilizing a JSON Schema offers several
advantages: it simplifies the versioning of the DSL and allows for the validation of
DSL instances against the schema. These validation abilities in turn provide syntax
highlighting and integrated documentation within the developers’ editors for increased
usability and ease of adoption.

4.2 Requirements

This section will present the requirements identified through our requirements engi-
neering process, presented in further detail in Section 4.2.2. This entails both the user
stories, focused on creating a high-level view of the solutions provided by our arti-
fact, along with our functional and non-functional requirements. The requirements
are presented together with a short description aimed to provide further context and
reasoning behind the requirement.

4.2.1 User Stories

We present our set of user stories, which was obtained from our initial interviews,
following the process described in Sect. . User stories are features written from the
perspective of a user, in our case a developer [30].

• UC1: As a developer, I want to be able to create and modify ML pipelines for
multiple platforms without requiring platform-specific knowledge.

• UC2: As a developer, I seek to avoid writing equivalent, platform-specific code for
multiple platforms when deploying ML models.

• UC3: As a developer, I want a configuration file in a format I recognize, like JSON,
to quickly change ML model parameters for rapid experimentation to enhance
efficiency.

• UC4: As a developer, I aim to dynamically adjust ML model configurations using
the DSL at runtime, thus avoiding releasing new application or library versions for
changes to the configuration.

• UC5: As a developer, I wish to use pre-built templates for common ML tasks,
enabling me to concentrate on developing new and unique features for improving
model performance.

• UC6: As a developer, I need a framework to easier identify potential failures in the
ML pipeline, reducing manual debugging efforts.

4.2.2 Functional Requirements

We now present functional and non-functional requirements, both of which were
derived from the user stories, following the process described in Sect. . The functional
requirements specify the functions of the system, the features it is going to have, and
how it handles data [31].

13

Pipeline Specification (DSL)

The ML serving pipeline refers to the set of processing steps required for an ML
serving model. Each step in the process is a pipeline step, that performs a specific
operation or transformation to data. As specified in FR1.1, this would include the
pre- and postprocessing steps required before and after using the ML models. The
preprocessing steps Wiretronic uses include cropping an image, rotating an image,
changing image format, normalizing pixels, and initializing buffers for storing image
data. The post-processing steps include tensor conversion, and extracting tensor data
into other formats.

• FR1.1: The DSL should be able to specify which pre- and postprocessing steps are
required for an ML model in a given context.

• FR1.2: The DSL should be able to be validated against a JSON Schema to ensure
its correctness.

Given the need for a clear and flexible way to define these pipelines, we have
chosen to use JSON Schemas for our DSL. JSON Schemas provides a structured yet
lightweight approach to defining the syntax and validation rules for our DSL, ensuring
compatibility and ease of use across different platforms.

Platform-Specific Model Interpretation (DSL + Architecture)

When specifying the steps in the DSL, the library should allow for model interpreta-
tion directly in Swift and Java. It ensures the application can be run across different
platforms, in this case iOS and Android, by abstracting away the complexities of writ-
ing platform-specific code, while also allowing for changes to the ML serving pipeline
on the fly.

• FR2.1: The DSL should enable model interpretation in Swift and Java, initiating
an ML serving pipeline from existing native functionality based on the steps defined
in an instance of the DSL.

Support Pre-Existing and Custom Operations (DSL)

A tool like this needs to be able to maintain the freedom of implementing specific
operations if needed. Our tool already provides the existing operations mentioned
in Section 4.2.2, however, these are still pre-defined operations Wiretronic uses for
their ML models. When working with ML models the preprocessing steps can signifi-
cantly impact the predictions of the models, hence making it an iterative process using
different operations that could need these custom operations [32].

• FR3.1: The DSL should enable the developers to use local functions instead of
those pre-defined in the DSL.

Support Dynamic Changes of the Pipeline (Architecture)

One of the advantages of implementing a DSL and library solution is that it enables
dynamic changes during runtime. By having the ML serving pipeline set up dynami-
cally through a configuration JSON file, we can change the model serving parameters

14

without Wiretronic having to release new versions of their library. Since all functional-
ity already exists in the library, we can dynamically load new model parameters when
changes happen to the configuration file, or initialize a new configuration file.

• FR4.1: Being able to switch between several configurations while the application
is running, enabling A/B testing of pipelines.

4.2.3 Non-Functional Requirements

Non-functional requirements, or quality requirements, specify how well the system
performs its functions. It is very important to address these alongside the func-
tional requirements, as they play a crucial role in what we want to achieve with the
requirements as stated in Section 4.2 [31].

Usability

Usability refers to how friendly the system is to users [33]. The artifact aims to ease
the workflow of the developers, hence it needs to be intuitive and have a low learning
curve.

• NFR1.1: The system should be easy to learn, allowing developers to use it with
minimal training required.

Maintainability

Maintainability here refers to the ability to improve and understand software [33]. We
collaborated with a particular industry partner, we deemed it essential to make the
artifact easy to build further upon by the company after the completion of the project.
By writing documentation about our solution, the company’s developers should easily
be able to understand our library and DSL to make changes or add new features.

• NFR2.1: The system should be easy to update, with clear documentation and
guides.

• NFR2.2: It should facilitate the addition of new ML serving pipeline features
without having to make substantial modifications to the existing code.

Performance

Performance defines how fast a software system or component responds to actions [33].
Performance may be a concern for some when using model interpretation [15]. Through
our research and implementation, we aim to prove that using model interpretation
should not negatively impact the application startup time when initiating the ML
serving pipeline through the library and DSL.

• NFR3.1: The system should not add more than 50ms to the application startup
time when initiating an ML serving pipeline from an instance of the DSL.

• NFR3.2: The system should not cause performance overheads when running an
application containing an ML serving pipeline dynamically set up by the library.

15

Compatibility

Compatibility refers to a system that exists and interacts with another system in
the same environment [33]. As the system is in a cross-platform environment it is
important to not have any limitations due to different operating systems or IDEs.

• NFR4.1: The system should work across multiple platforms (MacOS, Windows,
and Linux).

• NFR4.2: The system should work in Flutter codebases.

4.3 Design and Implementation

4.3.1 Current Approach

Figure 1 is a code snippet from the existing library at Wiretronic, it displays how
the preprocessing is written in Java for one of their models. The method performs
cropping, rotation, and normalization of an image, with the parameters for image size
being instance variables in the Java class. When implementing a new ML model or
making changes to an existing ML serving pipeline, the developers will also have to
write this code for Swift to support iOS devices. As will be presented in this section,
our DSL abstracts away the platform-specific details and provides the developer with
a single interface to specify the ML serving pipeline.

Fig. 1 The preprocessing method in Java that Wiretronic uses for one of their models.

16

Fig. 2 Abstract syntax of the DSL.

4.3.2 Proposed Approach

In this section, we propose an alternative approach to manage the ML serving pipelines
in cross-platform mobile environments, decoupling this configuration from the under-
lying platform. This proposal is the result of the previously outlined requirements
definition and the work done to inform that. It consists of two separate but connected
parts: the DSL aimed to aid developers in specifying the ML serving pipelines in a
single, familiar format, and the Flutter library which supports the DSL and generates
the pipelines at runtime.

Domain-Specific Language

The DSL provides definitions for three different aspects of the pipeline: the model
metadata, preprocessing, and postprocessing. Figure 2 displays the abstract syntax
of the language through a metamodel, showing the main concepts of the domain and
their relationships. We now present the concepts from our meta-model and illustrate
their specification in our concrete syntax by example.

Using the DSL, a developer can provide metadata about the model, consisting of
its name, the specific path of where to fetch the model from on iOS and Android
respectively, and the required input size of the model, which any image fed to the
pipeline can be resized to. How this metadata can be defined is displayed in Listing 1.

Preprocessing is divided into separate steps, called preprocessors. Each prepro-
cessor supports one specific action and can receive arguments from the developer as
necessary. The DSL provides built-in support for four preprocessors: cropping, resizing,

17

1 "model": {
2 "name": "Multihead",

3 "path": {
4 "android": "multihead.pt",

5 "ios": "multihead.mlmodel"

6 },
7 "input": {
8 "width": 380,

9 "height": 380

10 }
11 }

Listing 1 An example of how the DSL allows for specifying metadata about the model.

1 "preprocessors": [

2 {
3 "action": "crop",

4 "mode": "square"

5 },
6 {
7 "action": "resize",

8 "input": "custom",

9 "height": 380,

10 "width": 380

11 },
12 {
13 "action": "normalize"

14 }
15]

Listing 2 An example preprocessing configuration using the DSL.

rotating, and normalizing an image. These steps are commonly used when preprocess-
ing images for ML tasks, as the image received from e.g. the camera can be of different
dimensions and orientation depending on the device configuration.

The order of preprocessing steps is important. If, for example, an image received
from the camera is 2000x2000 pixels after cropping, but the model requires an image
with normalized colors of size 300x300, it would be a waste of time and comput-
ing power to apply the normalization before resizing the image, as it would require
iterating through over 40 times as many pixels. Since the JSON specification does
not guarantee a maintained order of object entries, the preprocessors have to be
defined in an array of objects and not an object with a key for each preprocessor
[34]. To accommodate this, each preprocessor is defined as an object with a key called
action specifying the name of the step. The additional argument entries that are
required for the preprocessor are then inferred by the schema through the value of the
action key. The built-in preprocessors are defined below, and an example preprocessor
configuration is displayed in Listing 2.

18

1 "postprocessor": {
2 "type": "segmentation",

3 "format": {
4 "height": 320,

5 "width": 320

6 }
7 }

Listing 3 Example of the postprocessing in Wiretronic’s Segmentation model using our DSL.

1 "postprocessor": {
2 "type": "multihead",

3 "heads": [

4 {
5 "name": "is_visible",

6 "type": "binary",

7 "threshold": 0.3

8 },
9 {

10 "name": "centerpoint_x",

11 "type": "regression"

12 },
13 {
14 "name": "centerpoint_y",

15 "type": "regression"

16 }
Listing 4 Example of the postprocessing in Wiretronic’s multi-headed model using our DSL,
showcases 4 out of 11 output heads.

• crop: Allows the developer to specify a mode. If mode is square, it will perform a
square crop in the center of the image. If mode is custom, the DSL requires the
additional arguments x, y, width, and height, specified as integers.

• resize: Resizes the input image. The developer can choose the input for the mea-
surements, if it is custom the image will be resized according to the arguments
specified by the developer for width and height. If it is model, the function will use
the size specified in the model metadata.

• rotate: Rotates an image by the number of degrees specified in the argument
degrees.

• normalize: Takes no additional arguments. Normalizes the image.

While we found the preprocessing steps to be generalizable and had a large overlap
in usage across models, the postprocessing was close to the opposite. Here, instead
of implementing support for specific functions that can be used for many different
models, we had to implement model-centric solutions.

19

Fig. 3 Illustration of how the model engine prepares an ML serving pipeline from a DSL instance.

Listing 4 displays the postprocessing of Wiretronic’s multi-headed model. This
figure illustrates why model output can pose a challenge when defining postprocess-
ing of these outputs using our DSL. This model outputs 11 ”heads”, specific to this
model. Comparing this to Listing 3, we see how different the two models’ outputs and
postprocessing can be. During our research, we implemented functionality for these
models as proof-of-concepts, displaying that the DSL can be utilized for both sim-
ple and advanced postprocessing tasks. However, if Wiretronic were to implement a
completely new model, they would need to implement this in the DSL.

While extending the DSL can be suitable when introducing a new model with com-
pletely new postprocessing, there may be one-off situations where a model requires
some custom operations in either the pre- or postprocessing stages. To accommo-
date this, we implemented a pre- and postprocessor registry, which allows developers
to introduce custom functionality without the DSL being an obstacle. Contrary to
Wiretronic’s current approach, where everything ML-related is handled in a library,
our DSL and library would allow defining custom functionality directly in the appli-
cation where it’s required. If developers then encounter the same situation in more
applications, they can decide to introduce the custom step into the DSL and library
permanently. The main difference between a custom implementation and an existing
one is that it would require a re-release of the application since it involves writing
platform-specific code that needs to be bundled with the application.

4.3.3 Model Engine

As required when opting for a model interpretation-based approach, a model engine
was implemented to handle the model-to-code transformation. The workflow for using
this model engine is shown in Figure 3. When starting the application, the developer

20

can initialize the model engine in Flutter by providing a path to the correct DSL
instance. This DSL instance is loaded and parsed, creating a nested dictionary referred
to as the model instance. Performing the parsing in Flutter helps avoid discrepancies
in parsing or file system access between platforms. After this, the model instance is fed
through a MethodChannel into the platform-specific model engines. The model engine
uses the model instance to fetch the correct pre- and post-processing steps for the ML
model from the processor registry. Additionally, it also uses the path provided in the
model instance to load the correct ML model from the file system. Upon fetching the
pre- and postprocessing steps and loading the ML model, the ML serving pipeline is
ready and can receive images from the device’s camera. Since the model interpretation
happens at startup, any performance overheads incurred will be present on application
startup and not when performing inference.

4.3.4 DSL Development Tools

Fig. 4 Comparison of an example JSON schema as defined using Typebox (left) and the actual
schema outputted by Typebox (right).

21

We used the TypeScript tool TypeBox to develop the JSON Schema and abstract
syntax that defines our DSL. TypeBox significantly reduces the amount of code hav-
ing to be written compared to defining a JSON Schema manually. Additionally, it
improved developer ergonomics by providing functions for set theory, allowing us to
easily define complex conditional types. After the JSON Schema had been defined
using TypeBox, we ran a TypeScript script that outputs the rendered JSON Schema
to a JSON file. Figure 4 displays how TypeBox allows for separation and significantly
reduced code when defining a JSON Schema, using a mock example.

5 Evaluation

This section covers our evaluation of the developed artifact. Here, we first conducted
an internal evaluation of the developed artifact, comparing the result with the visions
presented by Wiretronic and the set of requirements we developed as a result of our
initial exploration. Secondly, we evaluated the artifact together with Wiretronic, per-
forming a controlled experiment with two groups of engineers. In doing this evaluation,
we covered both aspects of verification and validation, ensuring not only that the
artifact has been built correctly, but also that it solves the correct problem.

5.1 Controlled Experiment Set-up

To perform the evaluation, we performed a controlled experiment. The purpose behind
this was two-fold: first, to identify the specific impact of our artifact, and second, to
maintain increased control over the experiment helped ensure similar conditions for
each trial, minimizing the impact of outside factors. The experiment was carried out
using a Latin square design [35], in which two groups each performed two tasks. One
group used our artifact to solve the first task and not for the second task, and vice
versa, as is displayed in Table 2. The Latin square design was chosen for its ability to
control for two potential sources of variability: the order of tasks and the individual
differences among participants. This design ensures that each participant experiences
each condition (using the artifact and not using the artifact) in a different order, which
helps to minimize learning effects and other biases that could influence the results.

Because of the small available sample size, we utilized stratified sampling [36].
The engineers were categorized into two groups for the Latin square design (explained
above): experienced and inexperienced, with both experienced engineers having four
years of experience and inexperienced zero, not having worked in the environment at
all. In total, we formed the two experiment groups with an equal number of experienced
and inexperienced engineers, as visible in Table 3.

All sessions were performed in a 60-minute time slot in which all participants had
the same time to perform the tasks. Furthermore, the two groups received identical
documentation for our artifact. The provided documentation consisted of a concise
description of the DSL elements with their attributes. The documentation as well as
the experimental tasks are available as part of our online appendix [7].

With this experiment, we aimed to identify whether the introduction of our arti-
fact improves the workflow of the specific process it is designed to improve, to give
answers to RQ3. Opting for a contrived setting allowed us to identify the impact of

22

Group 1 Group 2
Task 1 not using artifact using artifact
Task 2 using artifact not using artifact

Table 2 Experiment setup.

Group 1
Engineer A** Experienced
Engineer B Inexperienced

Group 2
Engineer C* Experienced
Engineer D Inexperienced

Table 3 The engineers from Wiretronic that
participated in the experiment, with their
respective experience levels. *Interviewee A,
**Interviewee B.

the artifact, albeit at the cost of generalizability and realism [37]. To provide further
nuance and compensate for the drawbacks of a controlled experiment, we conducted
semi-constructed interviews with the participants to gain qualitative insights.

Metrics

In RQ3 we wanted to answer to what extent our artifact improves the developer
experience in aspects such as maintenance, feature development, time-saving, and
resource planning. We used the experiment to obtain quantitative data and combined
this with the interviews for qualitative data. The quantifiable metrics we observed
through the experiment were the following:

• Time per completed task. Measured in minutes, extracted from commit timestamps.
• Lines of code written to complete each task. Measured in lines inserted and lines
deleted for each commit.

• Correctness, a binary metric of whether the task was performed correctly or incor-
rectly. Measured by manual static analysis of the solution, and occurrence of runtime
errors after the experiment.

The post-experiment interviews helped us obtain qualitative data about more sub-
jective metrics, identifying how usable, intuitive, and useful the artifact can be for the
engineers’ daily workflow. The questions asked in these interviews are available in the
appendix.

Additionally, we performed hypothesis testing on our metrics, specifically time and
correctness to get a more comprehensive view of our results. We expected the data to
not be normally distributed due to a small sample size, natural variations in human
performance, and the variability in the experience levels of the engineers. For the
development time, we utilized the Mann-Whitney U Test [38]. This test is suitable
because it is non-parametric and does not assume a normal distribution, making it
appropriate for small sample sizes [39]. For the correctness metric, we used McNemar
test in its exact variant [40]. It is designed for paired, binary data, in our case the
cases correct and incorrect, and is ideal for small sample sizes [41].

The hypotheses for the Mann-Whitney U test:

23

• Null Hypothesis (H0): There is no statistically significant difference in the develop-
ment time between the old and new approaches.

• Alternative Hypothesis (H1): There is a statistically significant difference in the
development time between the old and new approaches.

The hypotheses for Fisher’s Exact Test:

• Null Hypothesis (H0): There is no statistically significant difference in correctness
between the old and new approaches.

• Alternative Hypothesis (H1): There is a statistically significant difference in
correctness between the old and new approaches.

Tasks

As stated, we designed two example tasks to evaluate the artifact. Task 1 had three
subtasks and Task 2 had two subtasks. These were designed with the pain points of
Wiretronic in mind, identifying how effective the artifact can be in maintenance for
both the pre- and postprocessing parts of an ML serving pipeline. Therefore, Task 1 is
completely related to preprocessing and Task 2 is completely related to postprocessing.

Task 1 - Assessing preprocessing: Given an existing model with accompanying
pre- and postprocessing methods implemented, the engineers will perform the following
subtasks:

• Change the path from which the model is loaded.
• Modify the size of the input data, that the image will be resized to from 300 by 300
to a new specified dimension, 380 by 380.

• Enable normalization for the input image.

Task 2 - Assessing postprocessing: The model that has the least trivial post-
processing is a multi-headed model used for several computer vision tasks. Being
multi-headed, it can both provide e.g. whether an item is visible in the frame, and
produce a bounding box for locating the item.

• Adjust the threshold of the binary classification head named is visible to 0.5.
• Implement interpolation for the binary classification called size. Set the size to 300
if below the threshold, otherwise set it to 500.

5.2 Results

This section will go through the findings from our different evaluations of our artifact.
This involves examining whether it fulfills the requirements set out at the beginning
of the study along with the experiment and accompanying interviews from the third
cycle.

5.2.1 Experiment Results

The results from the experiment conducted as part of our evaluation are presented
here. They are presented group-wise, presenting the results from Group 1 and Group
2 for each metric. Each metric is reported per subtask.

24

New approach Old approach
1.1 1.2 1.3 2.1 2.2

Engineer A 1 1 1 3 4
Engineer B 2 1 2 9 21

Table 4 The time (in minutes) it took for engineers
A & B to complete the subtasks in the first task
using the new approach, and the subtasks in the
second task using the old approach.

Old approach New approach
1.1 1.2 1.3 2.1 2.2

Engineer C 2 5 4 1 2
Engineer D 7 5 15 2 6

Table 5 The time (in minutes) it took for engineers
C & D to complete the subtasks in the first task
using the new approach, and the subtasks in the
second task using the old approach.

Fig. 5 The mean time per task (in minutes) for the old and new approach, respectively.

Development Time

Overall, the artifact generated a substantial improvement in development time for
all subtasks. As displayed in Table 4 and 5, this was true for both the experienced
engineers (A, C) and the inexperienced engineers (B, D). Figure 5 displays the mean
time for all participants, categorized by task and approach used. When comparing an
inexperienced engineer not using the artifact and one using the artifact, the average
improvement in development time was 344%. If comparing experienced to inexperi-
enced engineers before introducing the artifact, the experienced engineers on average
performed 141% better than the inexperienced engineers.

Lines of Code

As displayed in Table 6 and 7, there were no significant differences in the absolute
number of lines of code required to complete the tasks. Only in task 2.2 was there a
major difference but this is attributed to normalization being a built-in function in the
DSL, thus only requiring it to be enabled instead of having to perform the normaliza-
tion manually. This experiment only included development on Android, however, and

25

New approach Old approach
1.1 1.2 1.3 2.1 2.2

Engineer A
Insertions 2 2 3 1 3
Deletions 2 2 0 1 3

Engineer B
Insertions 2 2 4 1 6
Deletions 2 2 0 1 4

Table 6 The lines of code written by engineers A & B to
complete the subtasks in the first task using the new approach,
and the subtasks in the second task using the old approach.

Old approach New approach
1.1 1.2 1.3 2.1 2.2

Engineer C
Insertions 2 1 4 1 1
Deletions 2 1 0 1 0

Engineer D
Insertions 1 1 3 2 1
Deletions 1 1 0 2 0

Table 7 The lines of code written by engineers C & D to
complete the subtasks in the first task using the old approach,
and the subtasks in the second task using the new approach.

New approach Old approach
1.1 1.2 1.3 2.1 2.2

Engineer A correct correct correct correct incorrect
Engineer B correct correct incorrect correct correct

Table 8 The correctness for engineers A & B when completing the
subtasks in the first task using the new approach, and the subtasks
in the second task using the old approach.

some of the tasks would require performing equivalent operations also on iOS, thus
increasing the required lines of code when not using the DSL.

Correctness

When measuring correctness we manually tested each commit to catch any runtime
failures, and statically analyzed the commits, ensuring that the commits using our
artifact did not include any unnecessary code not required for the task description. As
can be observed in Table 8 and 9, six subtasks implemented using the old approach
were considered correct, accounting for 60%. Meanwhile, for the new approach, eight
solutions were deemed correct, representing 80%.

5.2.2 Hypothesis Testing

We performed hypothesis testing on the development time and correctness metrics, as
explained in Section 5.1, Hypothesis testing yields a p-value between 0 and 1, which is
compared to a predefined threshold α. If p is smaller than α, the null hypothesis can be
rejected, that is, the difference between two samples (in our case, the two treatments
of using our solution or not) is deemed statistically significant. Following the widely
used default in scientific studies [42], we used the threshold value α = 0.05.

26

Old approach New approach
1.1 1.2 1.3 2.1 2.2

Engineer C correct correct wrong correct correct
Engineer D wrong correct wrong wrong correct

Table 9 The correctness for engineers C & D when completing
the subtasks in the first task using the old approach, and the
subtasks in the second task using the new approach.

For our development time comparison, a Mann-Whitney U test was utilized. We
obtained a p-value of 0.002 (Mann-Whitney U statistic: 90.0), which is clearly below
the significance threshold. Therefore, the results of the Mann-Whitney U test indicate
a statistically significant improvement in time efficiency with the new approach. This
finding supports discarding the null hypothesis, hence the new approach would reduce
the time required to complete tasks.

For the correctness comparison, a McNemar Exact test was used. We obtained a
p-value of 0.5 (test statistic: 0.0). Hence, the null hypothesis cannot be rejected, and
the difference between the new and old approaches cannot be deemed statistically
significant. This result is likely due to the small sample size. In conclusion, while,
unlike for the case of development time, we do not observe a statistical significant
benefit of our approach with regard to correctness, we do observe that our approach
does not compromise the ability of developers to produce correct solutions.

5.2.3 Requirements

Here, we evaluate the artifact with respect to the requirements defined in the first
cycle. This is split into functional and non-functional requirements, and evaluated
both using metrics from testing the software and subjective opinions presented by
engineers during the evaluative interviews held after the experiment.

Functional Requirements

Pipeline Specification: The DSL does enable developers to specify which pre- and
postprocessing steps are required for an ML model. The DSL does validate against a
JSON Schema when using an IDE, both in terms of what is required for an ML model
in general, and autocomplete with all pre-existing operations.

Platform-Specific Model Interpretation: The DSL does enable model inter-
pretation in Swift and Java using the model engine illustrated in Figure 3, and further
explained in Section 4.3.3.

Support Pre-existing and Custom Operations: Since the DSL was imple-
mented based on the results of our interviews and repository studies, we were able to
identify and implement support for the most commonly used operations, both in pre-
and postprocessing. We complemented this with the previously mentioned pre- and
postprocessor registry, which allows developers to include custom functionality, thus
fulfilling the requirement of supporting both pre-existing and custom operations.

Support Dynamic Swapping of Configuration: The ML serving pipeline is
set up through the runtime parsing of a JSON file. Thus, developers can write code
that supports changing which JSON file is loaded, and the library would instantiate a

27

new pipeline. This is possible thanks to the model interpretation approach, performing
the model-to-code transformation at runtime.

5.2.4 Non-functional Requirements

Usability and learnability: The goal was to make the DSL easy to learn, allowing
developers to use it with a minimal training required. During the second round of
interviews, the participants were asked to rate the DSL in terms of the properties of
intuitiveness, learnability, and usability on a Likert scale from 1 to 5. Intuitiveness
was scored with an average of 4.75, learnability was scored with average of 4.75, and
usability was scored with an average of 5. These answers indicate accomplishing our
goal. Additionally, one of the inexperienced participants stated the tool provides a
lower barrier of entry for contributing to the code: ”I would not dare to work in this
environment otherwise, using the new method makes me feel more secure” - Engineer
D. However, we did get feedback on the documentation being slightly confusing, with
both Engineer C & D stating that we should improve the documentation and that the
large amount of text in a single place made it difficult to get an overview. Based on
this feedback, we made improvements to the documentation after the interviews.

In line with the high average score for learnability, in their qualitative feedback,
participants expressed that they found the DSL to be highly learnable, with several
noting how quickly they adapted to its use. Engineer D mentioned, “I got a feeling for
how the processing steps should be formatted quite quickly, only having to look at the
readme for the relevant parameters when implementing a new step.” This sentiment
was echoed by Engineer B: “I thought the questions were harder to grasp than the
DSL itself.” Engineer C highlighted the immediate understanding of the DSL, stating,
“In this case: immediately,” while Engineer A described the learning process as “Very
fast, I would say.” These comments underscore the DSL’s intuitive design and the
effectiveness of the provided documentation in facilitating rapid learning and adoption.

To conclude, given the diverse background of our participants and the short train-
ing time to use the DSL for the provided task, we believe that our results shed a
promising light on the usability and learnability of the DSL, assuming a developer who
is familiar with the domain of pre- and postprocessing data in the context of machine
learning, and with JSON-based formats.

Maintainability: The main feature of the new approach is enabling easier updates
of ML serving pipelines: ”I think it was much better compared to without, there are
so many files I don’t recognize and difficult navigating the file structure” - Engineer B.
The DSL enables the developers to modify the models through only one configuration
file, not having to make substantial changes to the existing code.

Performance: We conducted a test measuring how long the application takes
from startup to readiness. This test was performed on a typical instance of our DSL
selected as a representative example for practical usage contexts of our DSL, based
on communication with our industry partner. Specifically, the DSL instance included
three preprocessing steps of square crop, resizing and normalization, parameter spec-
ifications for a multi-headed model, and nine built-in post-processing instructions for
the multi-headed model. We started the application ten times using each approach.
From the measurements, we found that our approach increases the startup time by an

28

New approach Old approach
1314 1381
1323 1356
1393 1278
1427 1348
1404 1340
1392 1350
1410 1383
1387 1372
1402 1374
1371 1399

average 1382.3 1358.1
median 1392.5 1364

Table 10 The startup time (in milliseconds) of
the application for the new and old approach
respectively.

average of 24ms. This fulfills requirement NFR3.1, stating that our approach should
not add more than 50ms to the startup time of an application consuming the library.
The test was conducted on a single computer and OS, therefore the results might
differ. The full results of the trial runs are displayed in Table 10.

Compatibility: We manually tested the new approach across Windows, Linux,
and MacOS. As long as the system had installed all the necessary software like Android
Studio and Flutter, there were no issues in either system during build or runtime.

6 Discussion

This chapter discusses different ways to support several ideas provided by the
interviewees during evaluation in both the first cycle and the second cycle.

6.1 Research Question 1

RQ1: How can we design a domain-specific language (DSL) for an ML model
with its required inputs, outputs, and pre- and post-processing stages?

It is important to distinguish that our research is directed at making a DSL describ-
ing the input, output, preprocessing, and postprocessing around ML models, not the
models themselves.

Through our iterative process working on the project, how an ML model can be
described through a DSL depends on how generalizable you want it to be. During our
research into the domain, we have found that it is quite easy to describe what happens
before the data is fed into the ML model, however, the difficult part is describing what
happens after. Finding a balance here was one of the more challenging tasks of the
study. In the end, the choice to implement the DSL using a JSON Schema with an
accompanying library allowed us to provide both a simple interface to describe ML
serving pipelines and a way to implement custom, one-off features without slowing
down development.

29

Our approach allows developers to specify metadata about the model, consisting
of its name, path on the device, and input shape. The preprocessing is described as
a series of steps, where we implemented support for the most common actions used
in Wiretronic’s current ML serving pipelines in addition to the possibility of defining
custom steps. Lastly, the DSL supports specifying the required postprocessing actions.
While the preprocessing actions were found to be quite trivial and generalizable, the
postprocessing steps are usually different between each model, opting for having to
implement custom functionality to handle the model outputs. Here, the functionality
to easily be able to define custom postprocessing actions is necessary.

Summary

We represent an ML model’s input, output, preprocessing, and postprocessing
steps a language in a DSL, using an underlying meta-model for capturing the
abstract syntax, and utilizing JSON Schemas to offer concrete syntax tailored
to industrial requirements.

6.2 Research Question 2

RQ2: How can we best implement and utilize the DSL in a concrete setting,
specifically in the development of cross-platform mobile applications?

One aim with the DSL was to create a unified interface for not only multiple
platforms but also for engineers of different backgrounds. This meant that we did not
want to make it overly related to the underlying platforms, since this could cause
confusion or unfamiliarity for ML-focused engineers. Furthermore, we did not want to
make the DSL too restricting, offering experienced engineers the possibility to combine
the DSL with custom, platform-specific functionality.

While the DSL is aimed at cross-platform mobile development, we did not want
to make it tied to the technique currently used at Wiretronic, for example as an
internal DSL written in Dart (for Flutter). This connects to the previously mentioned
point of creating a unified interface across platforms and experience levels, but it also
allows for porting or extending the DSL to additional platforms. We developed the
DSL and accompanying library so that if Wiretronic decides to shift its cross-platform
development to another technique, the DSL would not require any modifications.

To accommodate the initial requests made by engineers to not require a complete
re-release of the application upon changes to the ML serving pipeline, we implemented
the DSL using a model interpretation approach, instead of using code generation. Any
application consuming our accompanying library could fetch a remote file written in
our DSL and dynamically set up the ML serving pipeline, without having to re-release
the application.

30

Summary

The DSL and accompanying library were implemented to support different
underlying techniques, engineers of different backgrounds, and making changes
to the ML serving pipeline without re-releasing the application.

6.3 Research Question 3

RQ3: To what extent does the introduction of a DSL and an accompanying
library improve the developer experience in the aspects of maintenance, feature
development, time-saving, and resource planning?

From our controlled experiment and two rounds of interviews, it has been made
clear that a DSL designed in a familiar format can aid in lowering the barrier of entry
in this area of development. This may be the largest improvement when comparing
the previously used approach, as new engineers can contribute and experiment in
development. Through both objective and subjective metrics, our evaluation showed
that the engineers worked faster and more confidently while using our approach, partly
thanks to the ML-related functionality being isolated into a single file and format. In
addition, the results in Section 5.2.1 show us improvement in all metrics using our
new approach. The average improvement in development time was 344%, which is also
backed by the hypothesis testing performed in Section 5.2.2. The correctness improved
by 20% in the controlled experiment, but we could not prove statistical significance.
The engineers did however state in the interviews following the experiment they still
felt more secure using the new approach. If the DSL can help more engineers contribute
to this area of development it can help in all the aspects stated in this research question.
More engineers will be able to perform maintenance tasks and develop new features,
further helping Wiretronic deliver features faster and easing their planning.

Summary

The DSL does lower the complexity of edge-deployed ML at Wiretronic. The
DSL and accompanying library make the entry into the field quicker, while
also enabling the engineers to do the work faster and more confidently. Hence,
improving the developer experience in the aspects outlined in the research
question.

6.4 Cross-Platform Communication

Due to the nature of cross-platform development, there are many instances of com-
munication between the Flutter layer and the native layer through MethodChannels.
During the development of our library, we ran into many instances of having to debug
on both sides of the MethodChannels. This can become a very tedious and time-
consuming task. With our library solving the issues of layer communication, we can
effectively ease the need for debugging for the developers.

31

In the future, we may see a shift away from using channels and data serialization
for inter-layer communication. React Native explores this in their new architecture,
which is under development at the time of writing. Here, the native code is written
in C++ and the cross-platform layer (in this case, JavaScript) can hold references to
C++ objects and vice-versa, calling functions directly on these objects [13].

6.5 Threats to Validity

We discuss threats to validity in the three main directions of internal, external, and
construct validity.

Internal Validity

Internal validity is of concern when we examine causal relations [43]. We aimed to
ensure internal validity in our study by using a controlled setting, with the intent of
eliminating any confounding factors. The elicitation of our requirements and scope
was defined through only two interviews and casual conversations, each conducted
with the one mainly responsible for the Android part, and the other responsible for
the iOS part.

We evaluated our DSL and library with the developers at Wiretronic as the prob-
lem and research area were brought to light by them. This is a small group, and
this may cause problems with internal validity. If creating random groups for the
experiment, there is a chance that uneven levels of previous experiences in the area
become a confounding factor. As a mitigation to this issue, we used stratified sam-
pling and a cross-over design, in which participants from both groups are exposed to
both treatments, thereby turning each participant into their own control. As part of
the evaluation we also used manual static testing for the correctness, which may intro-
duce human error or bias. To mitigate this we also ran the code to see if the solutions
would introduce any runtime errors.

The two experienced participants in the experiment were also the interviewees in
the initial interviews, which might introduce bias or influence their performance. This
overlap could affect the way they approached the tasks. We are aware of this as a
potential threat but tried to minimize its impact through clear communication.

Another factor that may affect internal validity is the possibility that participants
may not be honest in their feedback. One of us has previously been employed at
Wiretronic, so the developers might provide positive feedback to help us in our work.
To mitigate this issue, we will clearly communicate that the respondents should give
answers and prefer tasks as they naturally would. Additionally, having been colleagues
in the past, we know the employees well enough that they will be comfortable giving
honest critiques.

During the experiment, one participant performed worse than the others, which
can be considered an outlier. We ran the statistical analysis again without the data
from this engineer, but we still observed statistical significance. Mitigating the impact
on our results.

32

External Validity

External validity is to what extent it is possible to generalize the findings [43]. Our
DSL was designed and implemented only the single ecosystem of Wiretronic, and our
evaluation involved a significant subsect of their engineers as participants. This pop-
ulation comprises of proficient software engineers with several years of experience.
Thus, the homogeneity and small size of our experiment may not be generalizable. In
defense of external validity, while our study was tailored to the needs of Wiretronic,
the underlying principles and methodologies we employed are not inherently limited
to this specific context We outline a set of assumptions for other companies and
application contexts where our findings could be relevant: First, the company devel-
ops applications for several mobile platforms, such as iOS and Android. Second, the
company needs to deploy pre-trained machine learning models on edge devices, par-
ticularly smart phones. Third, the company requires the ability to update ML serving
pipelines dynamically at runtime without re-releasing the application. Fourth, the
company seeks to improve collaboration and workflow efficiency between ML engineers
and application developers. Fifth, the company is open to using model-driven engi-
neering techniques, including a DSL for specifying ML serving pipelines. Companies
meeting these assumptions might directly benefit from the findings of our study.

Furthermore, as our scope limits us to deploying ML models on edge devices, this
study may not be applicable to all sorts of models or devices. Additionally, integration
and compatibility with existing ML frameworks or external platforms may pose a
challenge as the DSL is tailored to the needs of Wiretronic.

Finally, our evaluation does not address any standard benchmarks for ML, which
are not available for our addressed problem of edge deployment. Importantly, our scope
is separate from model development, where standard benchmarks such as MNIST are
widely used. These benchmarks do not come with a pipeline of deployment steps (pre-
and postprocessing) that would benefit from execution with platform-specific libraries,
the focus of our approach.

Construct Validity

Construct validity reflects if the measurements really represent what they are meant
to do [43]. During the controlled experiment we saw the low amount of lines of code
needed for our new DSL approach. It can be argued that our experiment is not com-
prehensive enough, but the tasks were designed with this specifically in mind. One
of the main pain points of Wiretronic was the need to write unnecessary amounts of
code to make these small tweaks. Another point is the completeness of the DSL, the
experiment does not capture all functionalities of the DSL.

A threat to our study of performance, in the context of validating the performance
requirement in 4.3.3, is that we might neglect other important dimensions of perfor-
mance, such as the scalability when ML models, datasets and pipelines grow in size.
Importantly, our approach is not directly involved with the processing of ML models
or their underlying datasets. The models processed by our approach are DSL instances
that describe ML deployment pipelines. For the actual processing of ML models, we
employ available platform-specific libraries. The automated use of such libraries, which
otherwise would have to be set up manually by developers, is facilitated by our model

33

interpretation engine, explained in Section 4.3.2. As the performance behavior for ML
models is inherited from the underlying libraries, a performance evaluation on larger
ML models or datasets would not evaluate our approach, but the used libraries.

As discussed in Section 5.2.4, our approach does lead to a performance penalty
related to pipeline preparation (specifically, loading and processing the DSL instance).
We report on benchmarking results measuring the impact of this penalty, which was
as small as 24 milliseconds for typical instances of our DSL. By comparison, the
overall time taken for loading the ML models and libraries, which is unavoidable
regardless of whether our approach is used or not, was significantly greater, dwarfing
the performance penalty of our approach. Scalability to larger DSL instances (that is,
pipelines with significantly more of pre- and postprocessing steps) was not a relevant
requirement of our industry partner, as the number of pre- and postprocessing steps
is generally small in practical usage contexts.

7 Related work

We now discuss related work in the directions of machine learning in cross-platform
Mobile Environments, MDE in edge devices, and domain-specific languages in the
deployment and development of machine learning models.

7.1 ML in Cross-Platform Mobile Environments

In the deployment of machine learning (ML) models within cross-platform mobile envi-
ronments, it is often advantageous to utilize platform-optimized ML frameworks. An
example of such a framework is Core ML for iOS [5]. The advantages presented by such
an approach increase as the ML model requires interaction with other hardware func-
tionalities, such as the camera of the device. In a scenario where continuous inference
on a camera stream is required, significant processing time can be saved by performing
the entire computation flow on the native layer, as it omits the data serialization intro-
duced by inter-layer communication [13]. Yet, the platform-optimized logic for each
target platform needs to be implemented for each application anew, a disadantage we
aim to mitigate with our model-driven approach, in which the knowledge about the
capabilities of the target platforms is encoded in the model interpretation engine.

7.2 MDE in Edge Devices

As hardware improves and new areas of applicability arise, the demand to deploy ML
models on edge devices increases. However, integrating ML models into edge device
environments still comes with many limitations in terms of computational resources,
power constraints, and network communication [44]. Furthermore, there is a significant
heterogeneity in edge devices, spanning from low-memory microcontrollers to high-end
smartphones. Working in this domain can therefore require familiarity with several
techniques and operating systems. Within the specific domain of mobile development,
Vaupel et al. [45] discuss how model-driven techniques can be used to create flexible,
cross-platform mobile applications, stating that models should be ”As abstract as
possible and as concrete as needed.” [45, 46]. By opting for model-driven techniques

34

and using higher abstraction levels we can create separate native builds from a single
source, similarly to techniques mentioned in Section 2.2.

7.3 Domain-Specific Languages in the Deployment and
Development of ML Models

DSLs can play a significant role in the deployment of ML models, especially on edge
devices where computation power and memory are limited. A DSL can help ensure
type and function compatibility, which is an integral part for models used for tasks
such as image recognition and text processing, as well as providing the ability to
efficiently manage tasks such as inputs and outputs. Zhao et al. [47] introduce a
system that exemplifies the use of a DSL in such a context. However, their focus is to
enable the service-oriented composition and deployment of data analytics services in a
heterogeneous edge environment, where different services can be deployed to different
backends. They do not support the specification of pre- and processing logic and its
execution using the custom hardware capabilities of different target platforms, as is
the focus of our approach. Similarly, in an IoT context, Moin et al. [48, 49] propose the
MLQuadrat approach for modeling a system architecture that can incorporate machine
learning and data science aspects and generate code from it. A primary focus of their
work is on model development, as their approach, unlike ours, supports model training
on IoT devices. While they provide a mode for using a black-box ML model, they do
not focus on our addressed task of generating code for the same deployment pipeline
to several, heterogeneous devices, which is our focus. Their approach is holistic, as it
assumes modeling structure and behavior of the entire software architecture, whereas
we provide a lightweight, targeted MDE solution for a specific task in a potentially
larger system (e.g., an app with significant UI and other non-ML components).

Beyond the development and deployment, MDE has also been used to support the
management of orthogonal ML aspects, such as asset management and dataset man-
agement. Traditional version control systems (VCS) can struggle to handle complex
assets such as ML models and datasets. In the paper by Idowu et al. [50], they address
these asset management challenges by introducing the Experiment Management Meta-
Model (EMMM). A meta-model to characterize ML asset structures as concepts and
their relationships observed in state-of-the-art tools, and conceptual VCS structures
that can hold both ML and traditional assets. Focusing on machine learning exper-
imentation and model development as well, d’Aloisio et al. present approach for the
quality-driven development of machine learning software through extended feature
models that capture aspects of the training pipeline and can be used to systemati-
cally identified configurations to enhance the given quality attributes. With a focus
on supporting the construction of new deep learning frameworks, Atouni [52] el al.
have published an artifact and reference model that supports build tasks and data
management in this context. Giner-Miguelez et al. [53] presents DescribeML, a tool
for utilizing a DSL to describe datasets. This tool aims to enable a more data-centric
approach in ML, to handle issues like undesired model behaviors resulting from biased
predictions.

35

7.4 ML Experiment Management Tools and MLOps

As ML-based software has become widespread, there is a trend from the ad hoc
development of machine learning projects to more systematic workflows that exploit
automation, based on dedicated tools. Two relevant terms in this context are ML
experiment management, which focuses on the systematic management of assets dur-
ing the experimentation and model training phases, and MLOps, which additionally
considers deployment and monitoring aspects. Idowu et al. [25, 54] studied 30 avail-
able tools in this technical sphere. As two selected examples, we consider MLFlow
and Comet.ML. Both tools have dedicated support for experiment management, such
as providing a tracking API for logging parameters and results during experiments,
Towards deployment, MLFlow has dedicated support for Cloud deployment, with a
focus on the containerization of models together with their dependencies, whereas
Comet.ML primarily focuses on model monitoring facilities with dashboards and visu-
alizations. However, to our knowledge, no existing tools in this technical sphere include
dedicated features for bridging technical heterogeneity of deployment to end devices
with custom, platform-specific code, which is the focus of our approach.

8 Conclusion

and Future Work In this paper, we present the development of a DSL specifically
for defining an ML serving pipeline in a cross-platform environment. We aimed to
simplify the deployment and maintenance of ML models on edge devices, focusing
on the unique challenges present in this environment. These challenges included soft-
ware deployment to external devices and working in cross-platform environments with
several code bases. The first cycle was about defining the scope through initial inter-
views with Wiretronic engineers and obtaining an overview of the domain through
researching relevant literature. Combining Wiretronic’s needs and thoughts with what
technologies would be the optimal approach for them, ultimately comes down to the
lightweight and easy-to-learn JSON Schema approach. Allowing the developers to in
one single configuration file change quickly what before would need a redeployment
of their library. The second cycle used the information gathered in the first cycle to
design and implement the artifact. Using the guidance from the research, interviews,
and engineers to ensure usefulness for the company and compatibility with their cur-
rent systems. Lastly, the third cycle conducts the controlled experiment followed by
second interviews to evaluate the artifact, both in terms of metrics and subjective
reactions from the engineers. Our research confirms that a DSL can reduce the com-
plexity typically involved when writing equivalent functionality for several platforms.
By abstracting platform-specific code, the DSL enables developers to define ML mod-
els and their required inputs, outputs, and pre- and postprocessing stages, simplifying
the aspects mentioned in our evaluation. In conclusion, the development of our arti-
fact represents a step toward simplifying the deployment of ML models especially on
smartphones in a cross-platform environment. It bridges the gap between ML engi-
neers and other developers, enabling common understanding and lowering the barrier
of entry to cross-platform development at Wiretronic.

36

The work done during this study can be expanded on, both within the domains
covered and across other areas of software engineering. First, there are numerous
possibilities for adding more features to the DSL, increasing its functionality and flex-
ibility. For instance, a scenario where Wiretronic needs to execute different pre- and
postprocessing steps depending on the deployment platform. Additionally, the current
requirement of having a separate configuration file for each model could be stream-
lined by extending the DSL to integrate all model configurations into a single, more
compact file. While there are many possibilities, it is important to note this could
also lead to increased complexity. Second, to explore further applicability of the DSL
within the same domain, it can be beneficial to implement a simple way to specify
if pipeline steps should be executed on only some platforms. Furthermore, to con-
tinue the work within the same or adjacent domains, a more generalizable solution
can be explored. This study focused only on the needs of a single company, primarily
developing ML models for image-based tasks. Due to the small size of Wiretronic’s
AI division, it would be valuable to study the applicability of similar artifacts in a
larger organization. This could both help in refining and generalizing the DSL and
help combat the validity threats related to the small sample size of this study. Expand-
ing the focus to adjacent domains, it can be beneficial to study both the potential
of using a lightweight DSL to describe ML serving pipelines in environments other
than smartphones and to explore its applicability for scenarios other than image-based
ML. Third, although the developed artifact was tailored to the needs of Wiretronic,
future research can be conducted into the impact of employing lightweight DSLs in
other settings, for organization-specific scenarios. While the development of a more
traditional DSL can be expensive in both development and adoption time, opting for
a lightweight and familiar approach can lower both development and adoption time,
while simultaneously lowering the barrier of entry for contributing to the DSL. In
addition, while our current implementation is based on Flutter, due to Wiretronic’s
requirements, the underlying principles and methodologies we employed are not inher-
ently tied to this framework. The core concepts of our model-driven approach, such
as the use of a DSL for specifying ML serving pipelines and the model interpretation
engine, can be adapted to other cross-platform frameworks like React Native or Xam-
ari. Finally, our preliminary evaluation demonstrates a need for standard benchmark
for our considered problem of ML deployment on edge devices.

References

[1] Chollet, F.: Deep Learning with Python, 2nd edn. Manning Publications, Shelter
Island, New York (2021). Chap. 1.2.7

[2] wirevision. https://apps.apple.com/se/app/wirevision/id1543684933

[3] Husqvarna Gear Identifier. https://apps.apple.com/se/app/
husqvarna-gear-identifier/id6464394076

[4] Flutter. https://flutter.dev/

37

https://apps.apple.com/se/app/wirevision/id1543684933
https://apps.apple.com/se/app/husqvarna-gear-identifier/id6464394076
https://apps.apple.com/se/app/husqvarna-gear-identifier/id6464394076
https://flutter.dev/

[5] Core ML. Apple Inc. Accessed: 2024-01-22 (2023). https://web.archive.org/web/
20231126225328/https://developer.apple.com/machine-learning/core-ml/

[6] Custom Models — ML Kit. Google. Accessed: 2024-01-22 (2023).
https://web.archive.org/web/20231208182614/https://developers.google.com/
ml-kit/custom-models

[7] The authors: Online artifact for ’Cross-Platform Edge Deployment of Machine
Learning Models: A Model-Driven Approach’ (2024). https://drive.google.com/
drive/folders/1y 3t7hfGKS7yujkOkGmSzya7PJ8RZHKZ

[8] Lai, L., Suda, N.: Rethinking Machine Learning Development and Deployment
for Edge Devices (2018)

[9] Bayerl, S.P., Frassetto, T., Jauernig, P., Riedhammer, K., Sadeghi, A.-R., Schnei-
der, T., Stapf, E., Weinert, C.: Offline Model Guard: Secure and Private ML on
Mobile Devices. In: 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 460–465 (2020)

[10] Song, H., Dautov, R., Ferry, N., Solberg, A., Fleurey, F.: Model-based fleet
deployment of edge computing applications. In: Proceedings - 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MODELS 2020, pp. 132–142 (2020)

[11] Zhang, Q., Li, X., Che, X., Zhou, A., Xu, M., Wang, S., Ma, Y., Liu, X.: A
Comprehensive Benchmark of Deep Learning Libraries on Mobile Devices. In:
Proceedings of the ACM Web Conference 2022 (WWW ’22), p. 10. ACM, New
York, NY, USA (2022)

[12] Stack Overflow Developer Survey 2023. Stack Overflow. Accessed:
2024-01-22 (2023). https://web.archive.org/web/20240121213425/https:
//survey.stackoverflow.co/2023/#most-popular-technologies-misc-tech-prof

[13] React Native: Why a New Architecture. Accessed: 2024-02-22 (2023).
https://web.archive.org/web/20231206110642/https://reactnative.dev/docs/
the-new-architecture/why

[14] Flutter: Writing custom platform-specific code. Accessed: 2024-02-22.
https://web.archive.org/web/20240214020240/https://docs.flutter.dev/
platform-integration/platform-channels

[15] Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering
in Practice. Springer, Cham, Switzerland (2017). https://link.springer.com/10.
1007/978-3-031-02549-5

[16] Mernik, M., Cwi, J.H., Sloane, A.M.: When and How to Develop Domain-Specific
Languages (2005)

38

https://web.archive.org/web/20231126225328/https://developer.apple.com/machine-learning/core-ml/
https://web.archive.org/web/20231126225328/https://developer.apple.com/machine-learning/core-ml/
https://web.archive.org/web/20231208182614/https://developers.google.com/ml-kit/custom-models
https://web.archive.org/web/20231208182614/https://developers.google.com/ml-kit/custom-models
https://drive.google.com/drive/folders/1y_3t7hfGKS7yujkOkGmSzya7PJ8RZHKZ
https://drive.google.com/drive/folders/1y_3t7hfGKS7yujkOkGmSzya7PJ8RZHKZ
https://web.archive.org/web/20240121213425/https://survey.stackoverflow.co/2023/#most-popular-technologies-misc-tech-prof
https://web.archive.org/web/20240121213425/https://survey.stackoverflow.co/2023/#most-popular-technologies-misc-tech-prof
https://web.archive.org/web/20231206110642/https://reactnative.dev/docs/the-new-architecture/why
https://web.archive.org/web/20231206110642/https://reactnative.dev/docs/the-new-architecture/why
https://web.archive.org/web/20240214020240/https://docs.flutter.dev/platform-integration/platform-channels
https://web.archive.org/web/20240214020240/https://docs.flutter.dev/platform-integration/platform-channels
https://link.springer.com/10.1007/978-3-031-02549-5
https://link.springer.com/10.1007/978-3-031-02549-5

[17] Xtext. Accessed: 24.01.24. https://eclipse.dev/Xtext/

[18] Iung, A., Carbonell, J., Marchezan, L., Rodrigues, E., Bernardino, M., Basso,
F.P., Medeiros, B.: Systematic mapping study on domain-specific language
development tools. Empirical Software Engineering 25, 4205–4249 (2020)

[19] Chavarriaga, E., Jurado, F., Rodŕıguez, F.D.: An approach to build JSON-based
domain specific languages solutions for web applications. Journal of Computer
Languages 75, 101203 (2023)

[20] Habib, A., Shinnar, A., Hirzel, M., Pradel, M.: Finding data compatibility bugs
with json subschema checking, pp. 620–632 (2021). Association for Computing
Machinery, Inc

[21] LinkedIn: What are the most common data conversion formats and standards in
your industry? Accessed: 2024-02-19 (2023). https://www.linkedin.com/advice/
0/what-most-common-data-conversion-formats-standards

[22] The Top 10 Data Interchange or Data Exchange Format Used
Today. Accessed: 2024-02-19. https://aster.cloud/2023/05/11/
the-top-10-data-interchange-or-data-exchange-format-used-today/

[23] JSON Schema: Getting Started Step by Step. Accessed: 2024-02-19 (2023). https:
//json-schema.org/learn/getting-started-step-by-step

[24] Attouche, L., Baazizi, M.-A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger,
S.: Validation of Modern JSON Schema: Formalization and Complexity (2024)

[25] Idowu, S., Osman, O., Strüber, D., Berger, T.: Machine learning experiment man-
agement tools: a mixed-methods empirical study. Empirical Software Engineering
29(4), 1–35 (2024)

[26] Knauss, E.: Constructive master’s thesis work in industry: Guidelines for apply-
ing design science research. In: 2021 IEEE/ACM 43rd International Conference
on Eoftware Engineering: Software Engineering Education and Training (ICSE-
SEET), pp. 110–121 (2021)

[27] Matzler, K., Hinterhuber, H.: The kano model: How to delight your customers,
pp. 313–327 (1996). https://www.researchgate.net/publication/240462191

[28] Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Boston, MA, USA (2004)

[29] Martin, R.C.: Design Principles and Design Patterns, pp. 12–14 (2000)

[30] Interaction Design Foundation - IxDF: What are User Stories? https://www.
interaction-design.org/literature/topics/user-stories. Accessed: 02.02.24 (2016)

39

https://eclipse.dev/Xtext/
https://www.linkedin.com/advice/0/what-most-common-data-conversion-formats-standards
https://www.linkedin.com/advice/0/what-most-common-data-conversion-formats-standards
https://aster.cloud/2023/05/11/the-top-10-data-interchange-or-data-exchange-format-used-today/
https://aster.cloud/2023/05/11/the-top-10-data-interchange-or-data-exchange-format-used-today/
https://json-schema.org/learn/getting-started-step-by-step
https://json-schema.org/learn/getting-started-step-by-step
https://www.researchgate.net/publication/240462191
https://www.interaction-design.org/literature/topics/user-stories
https://www.interaction-design.org/literature/topics/user-stories

[31] Lauesen, S.: Software Requirements-Styles and Techniques, (2002)

[32] Huang, J., Li, Y.F., Xie, M.: An empirical analysis of data preprocessing
for machine learning-based software cost estimation. Information and Software
Technology 67, 108–127 (2015)

[33] Non-Functional Requirements: Examples, Types, and How to Approach Them.
https://www.altexsoft.com/blog/non-functional-requirements/. Accessed: 2024-
02-26 (2023)

[34] The JSON Data Interchange Syntax. Accessed: 2024-04-14 (2017).
https://web.archive.org/web/20240407090452/https://ecma-international.org/
publications-and-standards/standards/ecma-404/

[35] Gao, L.: Latin squares in experimental design. Michigan State University (2005)

[36] Baltes, S., Ralph, P.: Sampling in software engineering research: A critical review
and guidelines. Empirical Software Engineering 27(4), 94 (2022)

[37] Stol, K.J., Fitzgerald, B.: The ABC of software engineering research. ACM
Transactions on Software Engineering and Methodology 27 (2018)

[38] SciPy Developers: scipy.stats.mannwhitneyu. Accessed: 2024-05-20. https://docs.
scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html

[39] Sijtsma, K., Emons, W.: Nonparametric statistical methods. In: International
Encyclopedia of Education, pp. 347–353. Elsevier, Amsterdam, Netherlands
(2010)

[40] statsmodels Developers: statsmodels.stats.contingency tables.mcnemar.
Accessed: 2024-11-19. https://www.statsmodels.org/dev/generated/statsmodels.
stats.contingency tables.mcnemar.html

[41] Jonsson, R.: Exact properties of mcnemar’s test in small samples (1993)

[42] McShane, B.B., Gal, D., Gelman, A., Robert, C., Tackett, J.L.: Abandon
statistical significance. The American Statistician 73(sup1), 235–245 (2019)

[43] Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen,
A.: Experimentation in Software Engineering (2012). https://link.springer.com/
book/10.1007/978-3-642-29044-2

[44] Moin, A., Challenger, M., Badii, A., Gunnemann, S.: Supporting AI engineering
on the IoT edge through model-driven TinyML. In: Proceedings - 2022 IEEE 46th
Annual Computers, Software, and Applications Conference, COMPSAC 2022, pp.
884–893 (2022)

[45] Vaupel, S., Taentzer, G., Gerlach, R., Guckert, M.: Model-driven development of

40

https://www.altexsoft.com/blog/non-functional-requirements/
https://web.archive.org/web/20240407090452/https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://web.archive.org/web/20240407090452/https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://www.statsmodels.org/dev/generated/statsmodels.stats.contingency_tables.mcnemar.html
https://www.statsmodels.org/dev/generated/statsmodels.stats.contingency_tables.mcnemar.html
https://link.springer.com/book/10.1007/978-3-642-29044-2
https://link.springer.com/book/10.1007/978-3-642-29044-2

mobile applications for Android and iOS supporting role-based app variability.
Software & Systems Modeling 17, 35–63 (2018)

[46] Vaupel, S., Strüber, D., Rieger, F., Taentzer, G.: Agile bottom-up development of
domain-specific IDEs for model-driven development. In: FlexMDE’15: Workshop
on Flexible Model Driven Engineering, Part of MODELS 2015, pp. 12–21 (2015)

[47] Zhao, J., Tiplea, T., Mortier, R., Crowcroft, J., Wang, L.: Data analytics service
composition and deployment on edge devices. In: Big-DAMA 2018 - Proceedings
of the 2018 Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks, Part of SIGCOMM 2018, pp. 27–32 (2018)

[48] Moin, A., Challenger, M., Badii, A., Günnemann, S.: A model-driven approach
to machine learning and software modeling for the iot: Generating full source
code for smart internet of things (iot) services and cyber-physical systems (cps).
Software and Systems Modeling 21(3), 987–1014 (2022)

[49] Kirchhof, J.C., Kusmenko, E., Ritz, J., Rumpe, B., Moin, A., Badii, A.,
Günnemann, S., Challenger, M.: Mde for machine learning-enabled software sys-
tems: a case study and comparison of montianna & ml-quadrat. In: Proceedings
of the 25th International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, pp. 380–387 (2022)

[50] Idowu, S., Strüber, D., Berger, T.: EMMM: A unified meta-model for tracking
machine learning experiments. In: 2022 48th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 48–55 (2022)

[51] d’Aloisio, G., Di Marco, A., Stilo, G.: Democratizing quality-based machine learn-
ing development through extended feature models. In: International Conference
on Fundamental Approaches to Software Engineering, pp. 88–110 (2023). Springer
Nature Switzerland Cham

[52] Atouani, A., Kirchhof, J.C., Kusmenko, E., Rumpe, B.: Artifact and reference
models for generative machine learning frameworks and build systems. In: Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, pp. 55–68 (2021)

[53] Giner-Miguelez, J., Gómez, A., Cabot, J.: DescribeML: a tool for describing
machine learning datasets. In: Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings,
pp. 22–26 (2022)

[54] Idowu, S., Strüber, D., Berger, T.: Asset management in machine learning: State-
of-research and state-of-practice. ACM Computing Surveys 55(7), 1–35 (2022)

41

Appendix 1 - Interview Guide for Initial Interviews

• Can you explain what code is equivalent but different in implementation across plat-
forms, and give examples from your experience where you had to write or manage
it?

• How often do you have to edit this code?
• How much work is it to make adjustments to this code?
• Is the file structure consistent across other projects you work on?

– Do you have a standardized file structure or guideline to use across projects?

• Is the code in its current form reusable across other repositories, or is it context-
specific?

• What IDE do you use for this work?

– Do you use different IDEs for the different languages (Java/Swift)?

• How do you do testing on native mobile code?
• Would it speed up your workflow if you had a tool to generate platform-specific code
for you by having to specify it only once in a file, similar to a configuration file?

– If so, how would you imagine the tool being implemented?

Appendix 2 - Interview Guide for Experiment
Interviews

• How extensive is your previous experience in deploying ML models in a cross-
platform mobile environment on a scale from 1 (no experience at all) to 5 (very
experienced)?

– How many years have you spent doing that work?

• What was your general impression of using the DSL to implement and make changes
to an ML serving pipeline?

• After using the DSL in the experiment, how would you rate it for the following
properties (from 1 to 5):

– Intuitiveness - how intuitive and natural was the DSL to use?
– Learnability - how fast could you get up to speed using the DSL?
– Usability - how usable was the DSL for the task at hand?

• Based on your own experience in implementing ML models: How would you rate the
usefulness of the DSL and the accompanying library on a scale from 1 (not useful
at all) to 5 (very useful) in your day-to-day development workflow, and why?

• Can you think of any scenarios where the DSL in its current form would be
particularly useful?

– If so, are there any features you would want the DSL to have?

• Can you think of any scenarios where the DSL in its current form would not be
useful?

42

– If so, are there any existing features that are unnecessary?

43

	Introduction
	Background
	Edge-deployed Machine Learning
	Cross-Platform Mobile Development
	Model-Driven Engineering (including Model Interpretation)
	Domain-Specific Languages (DSLs) with JSON Schema

	Methodology
	Design Science Cycles
	Cycle 1: Domain Understanding and Initial Artifact Definition
	Repository Analysis and Exploratory Program Comprehension
	Interviews
	Requirements Engineering

	Cycle 2: Artifact Design and Development
	Design and Technology Choices

	Cycle 3: Artifact Evaluation

	Results
	Initial Problem Exploration
	Interview Findings
	Impact on Artifact Development

	Requirements
	User Stories
	Functional Requirements
	Pipeline Specification (DSL)
	Platform-Specific Model Interpretation (DSL + Architecture)
	Support Pre-Existing and Custom Operations (DSL)
	Support Dynamic Changes of the Pipeline (Architecture)

	Non-Functional Requirements
	Usability
	Maintainability
	Performance
	Compatibility

	Design and Implementation
	Current Approach
	Proposed Approach
	Domain-Specific Language

	Model Engine
	DSL Development Tools

	Evaluation
	Controlled Experiment Set-up
	Metrics
	Tasks

	Results
	Experiment Results
	Development Time
	Lines of Code
	Correctness

	Hypothesis Testing
	Requirements
	Functional Requirements

	Non-functional Requirements

	Discussion
	Research Question 1
	Research Question 2
	Research Question 3
	Cross-Platform Communication
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related work
	ML in Cross-Platform Mobile Environments
	MDE in Edge Devices
	Domain-Specific Languages in the Deployment and Development of ML Models
	ML Experiment Management Tools and MLOps

	Conclusion

